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Abstract—This paper focuses on the rate-distortion optimiza-
tion of low-delay 3D video communications based on the latest
H.264/MVC video coding standard. The first part of the work
proposes a new low-complexity model for distortion estimation
suitable for low-delay stereoscopic video communication scenar-
ios such as 3D videoconferencing. The distortion introduced by
the loss of a given frame is investigated and a model is designed in
order to accurately estimate the impact that the loss of each frame
would have on future frames. The model is then employed in a
rate-distortion optimized framework for video communications
over a generic QoS-enabled network. Simulations results show
consistent performance gains, up to 1.7 dB PSNR, with respect
to a traditional a priori technique based on frame dependency
information only. Moreover, the performance is shown to be
consistently close to the one of the prescient technique that
has perfect knowledge of the distortion characteristics of future
frames.

I. INTRODUCTION

Videocommunications with depth perception are increas-

ingly gaining popularity and are expected to become an

important share of video applications in the next few years.

One of the most commonly used technique to achieve depth

perception is to send separate video information to each

eye, since this has been demonstrated to be a sufficient

condition to perceive depth [1]. Video coding standards are

addressing the issue of stereoscopic video by either including

new profiles in existing codecs, such as the Stereo High

Profile in H.264/AVC [2] or substantially modifying state-

of-the-art video coding standards to support stereoscopic or

even multiview video, such as in the recently developed

H.264/MVC [3].

In order to achieve a good compression ratio, such coding

algorithms exploit the correlation among different views at

the same time instant by means of disparity compensation, in

analogy with traditional video codecs which perform efficient

differential encoding between subsequent frames by means of

motion compensation. On the one hand, disparity compensa-

tion allows better coding efficiency, but on the other hand such

additional dependencies between views must be accounted for
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in the case of transmission over packet lossy channels since

errors may propagate across views.

Moreover, measuring the quality of a stereoscopic video

sequence is not as straightforward as in the case of monoscopic

video. Many factors, in fact, should be taken into account

in addition to the distortion introduced in the reconstructed

frames at the decoder, such as, for instance, the quality of the

depth perception and the fatigue caused by the stereoscopic

video in the observer. Those factors are difficult to model and

to incorporate in objective quality measures. Therefore, sim-

ilarly to monoscopic video, one of the most commonly used

objective quality estimation technique computes the quality of

the stereoscopic video as a combination of the qualities of

the two views. In particular, in the case of video containing

artifacts, it has been proposed to average the quality of the left

and right views [4], which is the approach employed in this

work.

Once a suitable quality measure for stereoscopic video

is identified, the optimization of stereoscopic video com-

munications becomes possible. For instance, in the case of

pre-encoded stereoscopic video sequences, a computationally-

intensive analysis can be carried out to characterize the rate-

distortion functions of the compressed video data in case of

losses. The resulting data might then be used to optimize the

transmission within a rate-distortion optimization framework

such as the one proposed in [5]. The work in [6] indeed

performs an offline parameter estimation to analytically model

the rate-distortion function of the sequences to be transmitted,

and a similar approach is followed to estimate the performance

of the channel coder and the distortion due to losses. The

work then uses such information to minimize the end-to-

end distortion in a streaming scenario and to obtain optimal

encoder and channel coding rates.

However, few efforts have been devoted to the case of

low-delay stereoscopic video communication scenarios, which

require low-complexity algorithms and do not allow pre-

computation since frames are available only at encoding time.

The scenario is important since it is commonly encountered

in interactive communication applications such as videocon-

ferencing, and it is expected that stereoscopy and depth

perception in general could contribute towards the goals of the
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so called telepresence. For monoscopic video, the work in [7]

proposes the use of a simple model to estimate the distortion

that would be caused by the loss of the frame being encoded

in future frames until the next resynchronization point, e.g.,

an I-type frame.

In this work we build on [7] and propose a distortion

estimation model suitable for a stereoscopic low-delay video

communication scenario that can estimate the expected distor-

tion at the decoder as a function of a given transmission policy.

We specifically address the case of a two view H.264/MVC

encoded video which heavily relies on disparity compensation

to improve compression. The proposed model can estimate the

effect of the loss of the currently encoded frame on the future

frames of both the left and right video sequences, using a low-

complexity approach that makes use of information which is

already available at the encoder. The performance of the pro-

posed model is tested by simulations to assess its performance

within a rate distortion framework aimed at transmission over a

generic QoS-enabled network. For comparison purposes, both

a traditional a priori approach relying on frame dependency

information only and a prescient algorithm which has access

to future frame information have also been considered.

The paper is organized as follows. Section II reviews the

H.264/MVC encoding standard and its applicability for the

low-delay stereoscopic video communication scenario. Then,

Section III introduces the proposed distortion model. The

simulation setup is described in Section IV, followed by the

results in Section V. Conclusions are drawn in Section VI.

II. LOW-DELAY H.264/MVC STEREOSCOPIC CODING

The H.264/MVC extension [3] of the H.264/AVC standard

adds efficient support for multiview video coding. It heavily

relies on disparity compensation among different views to

achieve a high coding efficiency, and it also supports complex

prediction structures among different views. Each frame in a

view can reference, in addition to past and future frames as

in traditional encoders, also frames in one or two views that

represent the scene at the same time instant from a different

viewpoint. This approach allows to reuse multiple-prediction

coding schemes already found in traditional encoders for, e.g.,

B-type pictures.

Even if the H.264/MVC extension allows complex pre-

diction structures involving a high number of dependencies

between frames, in the case of low-delay video communication

only simpler structures can be used, as in traditional video

encoding schemes using P-type frames only. In the case of

stereoscopic video, only two views are involved. The first

view, e.g., the left one, is coded independently, using an

IPPP... coding pattern as in traditional schemes, while the

second view can take advantage of the information already

encoded in the first one. Thus, for each non-intra frame in

the second view, motion compensation exploits the previous

coded frame in the same view, while disparity compensation

uses the already encoded corresponding frame in the first view.

The dependency scheme is depicted in Figure 1.

P P P P P P

P P P P PI

...

...Left view

Right view

Fig. 1. Encoding dependencies for a stereoscopic low delay scenario.

This structure allows for low-delay coding and decoding,

since there is no need to wait for future frames to be coded

before processing the current left and right frames. However,

the increased number of dependencies with respect to the

monoscopic case implies that decoding errors in the first view

propagate not only in the future frames in the same view,

but also in the other view. On the contrary, in case losses

happen in the second view, distortion is limited to future

frames belonging to this view. Moreover, in this case, cor-

rectly decoded frames in the first view might help in quickly

recovering from the loss. The amount of error propagation in

future frames, however, depends on how much the encoder

employed disparity compensation to code frames rather than

motion compensation from previously encoded frames in the

same view.

III. DISTORTION ESTIMATION MODEL FOR STEREOSCOPIC

VIDEO

In order to optimize multimedia communications, a reliable

technique to minimize the expected distortion at the decoder

is needed. Such a technique should be able to consider the

distortion introduced by the concealment, as well as the instan-

taneous characteristics of the compressed multimedia signals,

e.g., the coding dependencies between frames due to motion

and disparity compensation to estimate error propagation. In

principle, it would be possible to compute an exact estimate

of the expected distortion at the decoder by simulating each

possible pattern of loss events, computing the distortion in the

reconstructed multimedia signal at the decoder and weighting

it by the probability that such a pattern occurs. However, this

is infeasible since the number of patterns grows exponentially

with the number of transmitted units, i.e., packets, and all

patterns of loss events should be simulated because of the

differential encoding between frames which is the main cause

of error propagation. Moreover, in a low-delay transmission

scenario, which is the main focus of this work, such a

computation is impossible since future frames still have to

be encoded when an estimate of the expected distortion value

must be available.
In order to reduce the complexity of the problem, first

we consider one frame at a time, and we estimate the total

distortion di introduced by the loss of a single frame i by simu-

lating the decoder behavior in case of loss. Frames belonging

to different views are considered separately. A distortion is

introduced in the concealed video frame, as well as in all

frames which are dependent on either the concealed one,

directly and indirectly. When an independently encoded frame,

e.g., an I-type frame, is encountered, i.e., at the beginning of

a new group of pictures (GOP), error propagation stops.
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Therefore, it is possible to compute the exact distortion

caused by the loss of a single frame in future frames of both

views until the beginning of the next GOP. If we assume

that distortion contributions when more than one frame is lost

are additive, the number of decoding simulations needed to

compute the distortion caused by the loss of each frame equals

the number of frames. This assumption seems reasonable if

the frame loss rate is limited, since it implicitly assumes that

the data used for concealment are error-free. In the case of a

simple frame copy concealment technique, this is equivalent

to assume that the previous frame is error-free. Experimental

studies and results will show that such an approximation is

justified by the good performance of the proposed techniques.

Since an I-type frame stops error propagation, we consider

one GOP at a time. Let the total distortion for a given loss

pattern X composed by N events be

D =

N
∑

j=1

xjdj (1)

where X = (x1, ..., xN ) is a vector containing the outcome

xj of N transmission events, whose value is equal to zero

if frame j is correctly received, and one otherwise. N is the

number of frames in a given GOP. Eq. (1) can be restated for

the case of stereoscopic video by separating the distortion for

the left and right views:

D =

N
∑

i=1

xL,i

1

2

(

d
(L)
L,i + d

(L)
R,i

)

+

N
∑

i=1

xR,i

1

2

(

d
(R)
L,i + d

(R)
R,i

)

(2)

where i is a given time instant in the GOP, subscripts indicate

the view, i.e., left or right, to which the events and the

distortion values refer, and superscripts indicate in which view

(L) or (R) the loss was introduced to compute the distortion

values. Clearly, since the left view does not depend on the

right view, as shown in Figure 1, losses in the right view do

not introduce distortion in the first view, i.e., d
(R)
L,i = 0.

In case of low delay scenarios, however, it is not possible to

compute any of the values d
(l)
v,i as they are defined above, since

they include all the contributions to distortion propagation in

future frames which are, of course, not yet available at the

encoder. The only quantity that can be easily computed at the

encoder at a given time instant are the distortions introduced

in the left and right frames at time instant i, that we refer to as

d̂
(l)
v,i. Incidentally, this also reduces computational requirements

with respect to the previous case which would require to

decode all future frames until the end of the GOP.

Figure 2 shows an example of the distortion in the current

frame and in each of the future frames when the first frame of a

given GOP is lost. The trend shown in the figure is similar for

all the video sequences and GOPs considered in this work. The

chosen sequences are representative of videos with different

characteristics, as detailed in Section IV. The error propagation

over time if a loss happen in the main (left) view is similar for

both views, whereas the distortion due to error propagation in

case of loss in the right view rapidly decrease because disparity
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Fig. 2. Distortion (MSE) introduced in the left and right view of a GOP if
the first left or right frame of the GOP is lost. Interview sequence.

compensation from correctly decoded frames in the left view

helps in quickly reducing the distortion. Therefore, we propose

to use the following model in order to estimate the distortion in

future frames, thus being able to compute an estimate of d
(l)
v,i,

referred to as d̃
(l)
v,i, on the basis of d̂

(l)
v,i values only, without

waiting for future frames, making the technique suitable for

very low delay scenarios. The d̃
(l)
v,i values are computed as



















d̃
(L)
L,i = d̂

(L)
L,i + nGfLd̂

(L)
L,i

d̃
(L)
R,i = d̂

(L)
R,i + nGfLd̂

(L)
R,i

d̃
(R)
L,i = 0

d̃
(R)
R,i = d̂

(R)
R,i + nGfRd̂

(R)
R,i

(3)

where nG is the number of frames needed to reach, from the

time instant i+1, the end of the GOP, and fL and fR are two

tunable parameters of the model, which have been determined

experimentally.

One hundred random frame loss patterns have been gener-

ated for different loss probabilities, ranging from 5% to 20%,

and the distortion for each considered video sequence has

been computed by actual decoding as well as by means of

the proposed model, using different values for fL and fR.

Experimentally, it has been found that the values fL = 1.0
and fR = 0.15 yield, on average, a good distortion estimate,

close to the actual distortion. Note that the distortion has been

computed, for each video sequence, as the mean squared error

(MSE) with respect to the error-free decoded video, so that

frames which are not affected by error propagation do not

contribute to the total distortion.

The complexity of the proposed model is limited, since

d̂
(l)
v,i values can be computed in O(P ), P being the number

of pixels, using the decoded frames present in the decoder

memory for motion and disparity compensation purposes, and

the complexity implied by Eq. (3) is O(M), M being the

number of macroblocks.

At this point, Eq. (3) allows to formulate the classical mul-

timedia quality optimization problem over a generic unreliable

communication channel, since it can be used to compute an
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estimate of the expected distortion at the decoder. The problem

can be formulated as choosing the transmission policy Π which

solves the equation

min
Π

E[D(Π)] (4)

subject to all the transmission constraints, and in particular

channel constraints such as maximum rate. If a given transmis-

sion policy Π = (π1, ..., πN ) assigns a residual loss probability

pj(πj) to each frame j to be transmitted with transmission

mode πj , in the case of stereoscopic video transmission the

problem can be formulated as

min
Π

N
∑

i=1

pL,i(πL,i)
1

2

(

d̃
(L)
L,i + d̃

(L)
R,i

)

+

N
∑

i=1

pR,i(πR,i)
1

2
d̃
(R)
R,i

(5)

where the subscripts and superscripts have the same meaning

as in Eq. (2), N is the number of frames in one view of

one GOP and Π = (πL,1, ..., πL,N , πR,1, ..., πR,N ) is the

transmission policy for each frame in the GOP.

IV. SIMULATION SETUP

In order to test how the proposed distortion model performs

in a practical case, we consider a simple QoS-enabled network

which offers two service levels: perfect protection against

losses and best-effort with packet loss probability p. This could

model, for instance, a DiffServ network [8] which offers both

a standard best-effort service and a fee-based loss-free service.

For simplicity’s sake we assume that each frame is put into

one packet. Let rL,i and rR,i be the size of the left and right

frames at time instant i, respectively, and Rmax the maximum

bandwidth that the transmitter is willing to send as loss-free.

Let E[D(Π)] and R(Π) be defined as

E[D(Π)] =

N
∑

i=1

(1 − πL,i)p
1

2

(

d̃
(L)
L,i + d̃

(L)
R,i

)

+

N
∑

i=1

(1 − πR,i)p
1

2
d̃
(R)
R,i

(6)

R(Π) =

N
∑

i=1

πL,irL,i + πR,irR,i (7)

where each πv,i is either zero or one depending on the service

(best effort or loss-free) used for transmitting the frame i

belonging to view v. The transmission optimization problem

can be formulated as

min
Π

E[D(Π)]

s. t.: R(Π) < Rmax.
(8)

Eq. (8) can also be used if we are interested in minimizing

the distortion with respect to the original uncompressed video

sequence, since the total distortion can be approximated as

the sum of the encoding distortion and the distortion due to

channel losses [6]. The results section will show that such an

approximation is reasonable and it yields good results.
Rmax can be expressed either as an absolute bandwidth

value or as a fraction s of the total video bandwidth, as

done in this work. In particular, for each GOP, we compute

Rmax = s · RestGOP , where RestGOP is an estimate of the

total size RGOP of the current GOP, which is not known by the

encoder in a low-delay scenario until the GOP has been fully

coded and transmitted. For this reason, we use an estimate

of the GOP size based on the previous size of the GOP, i.e.,

RestGOP = RprevGOP .
This work considers three different strategies to assign pack-

ets to the two network services. First, as a comparison term,

a random assignment is performed, while trying to fulfill the

constraint on the maximum fraction s of bandwidth to assign

to the loss-free service. Since in a low-delay stereoscopic video

transmission scenario a decision must be taken for the left and

right frames every time a new couple of frames is produced by

the encoder, frames are sent using the loss-free service with

uniform probability equal to s.
A second technique implements an “a priori” approach

which considers frame dependency information. The first

couple of frames (both left and right) of each GOP are sent

using the loss-free service until the number of sent bytes does

not exceed the maximum bandwidth constraint s · RestGOP ,

where RestGOP is estimated as previously described. The

underlying idea is that frames, such as the first ones in each

GOP, that might propagate errors to a large number of frames

must be protected better than the others in the GOP. Since both

techniques do not guarantee to send exactly s · RGOP bytes

using the loss-free service, because the exact size RGOP of the

current GOP is not known while transmitting it, the remaining

(or excess) bytes are added (or subtracted) from the bandwidth

constraint for the loss-free service in the next GOP. In this way

the fraction of bytes sent using the loss-free service tends to s

despite the potentially unreliable estimate of each GOP size.
A third technique exploits the distortion information com-

puted as described in Section III by means of a rate-distortion

optimization framework. For each GOP, the constrained min-

imization problem in Eq. (8) can be recasted into an uncon-

strained one using a Lagrangian multiplier λ:

min
Π

D(Π) + λR(Π). (9)

Finding the λ value which satisfied the constraint in Eq. (8)

would require the knowledge of the rate and distortion infor-

mation for all the frames in a GOP, which is not possible

in the low-delay scenario considered in this work. Therefore,

an alternative approach is used. A value of λ is chosen

for each GOP, then, given that λ value, the minimization

problem can be solved for each left and right frame at time

i independently from the other frames thus determining each

πv,i independently in O(1). Hence, each frame is sent using

either the loss-free or the best-effort service immediately after

encoding, depending on the resulting πv,i value. At the end of

the GOP, the total amount of loss-free bandwidth is computed

and compared with the fraction s of the total GOP size. The λ

value is then adjusted before transmitting next GOP to increase

or decrease the amount of loss-free bandwidth depending

on the previous over- or under-utilization of the fraction s

of loss-free bandwidth. The approach is similar to the one
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Fig. 3. PSNR as a function of the PLR for the interview video sequence,
70% sent as loss-free service.
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Fig. 4. PSNR as a function of the PLR for the elephantsdream video
sequence, 70% sent as loss-free service.

used by rate-distortion optimized rate control algorithms in

video encoders, where only the λ value is adjusted in order

to meet the rate constraints without explicitly enforcing an

absolute rate constraint. The λ update rule is the same as the

one employed in [9]. Thus, the total complexity of the rate-

distortion optimized transmission system is O(P ), P being

the number of pixels.

Various test sequences, different in content type and reso-

TABLE I
CHARACTERISTICS OF THE VIDEO SEQUENCES.

Sequence Frames Bitrate PSNR
(kbit/s) (dB)

1033 (left) 40.50 (left)
Interview 241 572 (right) 40.49 (right)
(704×576) 1605 (total) 40.49 (avg.)

659 (left) 45.39 (left)
Elephantsdream 89 334 (right) 45.41 (right)
(960×512) 993 (total) 45.40 (avg.)

374 (left) 41.53 (left)
Ballet 97 259 (right) 41.05 (right)
(512×384) 633 (total) 41.29 (avg.)
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Fig. 5. PSNR as a function of the PLR for the ballet video sequence, 70%
sent as loss-free service.

lution, are used in this work. The ballet sequence is obtained

by the homonymous Microsoft multiview sequence [10] by

using the data captured by camera #4 and #5 as the left

and right views. The elephantsdream sequence is obtained by

selecting a segment from the freely available homonymous

computer-animated movie [11]. In this case, the stereoscopic

sequence was generated by rendering the selected scene from

two different point of views, slightly left and right of the

original camera position. Finally, the interview sequence is

obtained by applying a depth-image based rendering (DIBR)

technique [12] to sequence [13], that only provides video

plus depth-range information. The DIBR technique is able to

compute a left and right view by shifting the pixels of the

original monocular video of an amount proportional to the

depth of each pixel. These video sequences have been chosen

in order to represent different types of stereoscopic content

originating from widely different techniques.

Video has been encoded using the H.264/MVC test model

software v. 8.0 [14], with the frame dependency scheme

shown in Figure 1. The quantization parameter (QP) has been

kept constant equal to 26 for all the frames. Every twelve

frames in the main (left) view a new I-type frame is inserted.

Table I summarizes the characteristics of the video sequences

including bitrates and encoding PSNR. Different fractions s

of loss-free bandwidth as well as frame loss rates have been

tested. For each condition, values are averaged over 30 channel

realizations.

V. RESULTS

Figure 3, 4 and 5 show the performance of the random,

a priori and proposed model-based rate-distortion optimized

techniques as a function of the packet loss rate (PLR) when

the fraction s of loss-free bandwidth is equal to 0.70. The rate-

distortion optimized technique shows gains ranging from 0.2

up to about 1.7 dB PSNR with respect to the a priori technique,

depending on the considered video sequence and the packet

loss rate. The gain is even more pronounced, as expected, with

respect to the random technique. The gain increases if the

packet loss rate increases, which confirms that the distortion
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Fig. 7. PSNR as a function of the share of loss-free service for the
elephantsdream video sequence, 10% PLR.

additivity assumption do not negatively affect the performance,

at least up to 20% PLR.
Moreover, those figures also show the performance that can

be achieved by fully decoding the whole GOP to estimate the

distortion in future frames, i.e., using the d
(l)
v,i values instead

of the d̃
(l)
v,i ones in the rate-distortion optimized technique.

The technique, named “prescient” due to the need for fu-

ture information to perform distortion computation, is useful

for establishing an upper bound on the performance of the

proposed model-based technique. The figures show that the

proposed model-based rate-distortion optimized technique is

always very close to this upper bound.
Figure 6 and 7 show the performance of the three techniques

as well as the upper bound as a function of the fraction of loss-

free bandwidth when the packet loss rate is 10%. The rate-

distortion optimized technique shows gains ranging from 0.3 to

about 1.6 dB PSNR with respect to the a priori technique. The

gain, as expected, increases as the share of loss-free service

decreases, since in this case the possibility of taking into

account the distortion that is potentially introduced in future

frames due to the loss of each frame is a great advantage.

VI. CONCLUSION

In this work a new low-complexity distortion estimation

model for stereoscopic video suitable for low-delay video

communication scenarios has been proposed. The distortion

introduced by the loss of a given frame has been investigated

and a model has been designed in order to accurately estimate

the impact that the loss of each frame would have on future

frames in both the left and right views. The model only

relies on information that can be easily computed by means

of encoder side information. Simulations results using the

model in a rate-distortion optimized framework for video

communications over a generic QoS-enabled network show

consistent performance gains with respect to a traditional pri-

oritization technique based on frame dependency information

only, as well as a very small gap from the upper bound,

i.e., the performance of a prescient technique that has perfect

knowledge of the distortion characteristics of future frames.

Future work will be devoted to extend the model to the

multiview case.

ACKNOWLEDGMENT

The author wishes to thank Andrea Marquet for providing

the rendering of the stereoscopic version of the part of the

elephantsdream video sequence used in this work.

REFERENCES

[1] A. Puri, R.V. Kollarits, and B.G. Haskell, “Basics of stereoscopic video,
new compression results with MPEG-2 and a proposal for MPEG-4,”
Signal Process. Image Comm., vol. 10, pp. 201–234, Jul. 1997.

[2] ITU-T Rec. H.264 & ISO/IEC 14496-10 AVC, “Advanced video coding
for generic audiovisual services,” ITU-T, Mar. 2009.

[3] Y. Chen, Y.-K. Wang, K. Ugur, M.M. Hannuksela, J. Lainema, and
M. Gabbouj, “The emerging MVC standard for 3D video services,”
EURASIP Journal on Advances in Signal Processing, 2009, Article ID
786015, 13 pages.

[4] H. Brust, A. Smolic, K. Mueller, G. Tech, and T. Wiegand, “Mixed
resolution coding of stereoscopic video for mobile devices,” in Proc. of

3DTV Conference, Potsdam, Germany, May 2009.
[5] P.A. Chou and Z. Miao, “Rate-distortion optimized streaming of packe-

tized media,” IEEE Transactions on Multimedia, vol. 8, no. 2, pp. 390–
404, Apr. 2006.

[6] A. Serdar Tan, A. Aksay, G.B. Akar, and E. Arikan, “Rate-distortion
optimization for stereoscopic video streaming with unequal error pro-
tection,” EURASIP Journal on Advances in Signal Processing, 2009,
Article ID 632545, 14 pages.

[7] F. De Vito, D. Quaglia, and J.C. De Martin, “Model-based distortion
estimation for perceptual classification of video packets,” in Proc. of

IEEE Int. Workshop on Multimedia Signal Processing (MMSP), Siena,
Italy, Sep. 2004, pp. 79–82.

[8] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An
architecture for differentiated services,” RFC 2475, Dec. 1998.

[9] R. Zhang, S.L. Regunatha, and K. Rose, “Video coding with optimal
inter/intra-mode switching for packet loss resilience,” IEEE Journal on

Selected Areas in Communic., vol. 18, no. 6, pp. 966–976, Jun. 2000.
[10] C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski,

“High-quality video view interpolation using a layered representation,”
ACM Trans. on Graphics, pp. 600–608, Aug. 2004.

[11] Orange Open Movie Project studio. (2006) “Elephantsdream” video
sequence, time range 2:54-2:58, scene 03 19. [Online]. Available:
http://www.elephantsdream.org

[12] C. Fehn, “Depth-image-based rendering (DIBR), compression and trans-
mission for a new approach on 3D-TV,” in Proc. of SPIE, San Jose, CA,
Jun. 2004.

[13] “Interview” video sequence. [Online]. Available: ftp://ftp.tnt.uni-
hannover.de/pub/3dav/3DAV Demos/FHG HHI

[14] (2010, Mar.) JMVC reference software v. 8.0. [Online]. Available:
jvtuser@garcon.ient.rwth-aachen.de:/cvs/jvt co -r JMVC 8 0 jmvc

86


