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Abstract — Joint source-channel decoding tech-
niques capitalize on residual redundancy that typi-
cally remains following a source encoding operation.
These methods, which include MAP and MMSE-
based decoders, estimate the sequence of encoded
source symbols based on statistical knowledge of both
the channel and the encoded source. Generally, these
techniques are based on a Markov model for the quan-
tized source and, thus, on a hidden Markov model
for the source-channel tandem. The number of states
in the hidden Markov model, and thus the computa-
tional and storage complexities, grow ezponentially with
the order (K) of the Markov model, i.e., the complex-
ity order is O(N**!T), with N the number of source
quantization levels and T the length of the data se-
quence. Thus, to retain implementable complexity,
low order models (K = 1,2) are typically used, at the
expense of model accuracy. In this work, we propose
a method to bridge the performance-complexity gap,
i.e. to provide solutions that give better performance
than a low order decoder while incurring only mod-
est increases in complexity. Our decoding approach
consists of two stages: 1) low order JSC decoding, fol-
lowed by 2) a linear FIR filtering of the JSC decoded
signal. The linear filter is chosen to provide an op-
timal (least squares) estimate of the original source.
This approach provides an approximate way to in-
crease the effective order of the decoder, yet while
retaining quite manageable complexity. The new ap-
proach is demonstrated to significantly improve upon
standard MMSE-based JSC decoding performance,
both for the case of nonpredictive source coding (e.g.
vector quantization) as well as for predictive source
coding (DPCM).

I. INTRODUCTION

In [13], for a differential pulse code modulation (DPCM) sys-
tem, a suboptimal predictor was used, introducing statistical
dependencies within the sequence of quantization indices out-
put by the DPCM encoder. The authors proposed to exploit
this redundancy at the decoder to improve error resilience in
much the same way that controlled redundancy inserted via
channel coding is exploited. They developed a joint source-
channel (JSC) decoder that finds the most likely sequence of
transmitted indices, given a sequence of noisy received indices.
Their technique requires that the decoder have access to a sim-
ple model for the quantized source as well as a model for the
channel. It was demonstrated in [13] that significant error-
resilience could be achieved. Following this work, there has
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been substantial further activity in decoding based on residual
redundancy.

Both maximum a posteriori (MAP) [12] and minimum
mean-squared error (MMSE) [8] techniques have been pro-
posed. These JSC decoding techniques have been applied both
to non-predictive coding systems (e.g. scalar and vector quan-
tization) [8, 9, 12] as well as to predictive coding systems (e.g.
DPCM) [4, 6, 10, 13]. They have also been applied both to
time series and to images. One difficulty with these methods,
especially when applied to images, is the computational and
storage complexity of the decoding.

JSC decoding uses a Markov model for the quantized
source. The concatenation of the source and channel is, thus,
a hidden Markov model, with the quantized source playing
the role of the hidden state sequence. The decoder’s prob-
lem thus boils down to estimating the state sequence, or some
function of it (in particular the sequence of quantized values).
Dynamic programming/the Viterbi algorithm can be used to
identify the most likely state sequence. Alternatively, the For-
ward /Backward [1] algorithm finds the a posteriori state prob-
abilities, which can be used for conditional mean estimation,
i.e. for MMSE estimation. Unfortunately, in either case, the
decoding complexity increases erponentially with the Markov
model order K, i.e. the complexity is O(NE+1T), with N the
cardinality of the state and T the sequence length. Thus, in
the literature, one typically only sees low orders investigated,
e.g. K=2 or 3. In the case of an image source, the computa-
tional difficulties are only accentuated. In [10] a Markov mesh
model was suggested for a DPCM encoded source. Even for
the most minimal causal conditioning context, based on one
pixel to the left and one pixel above the current pixel of inter-
est, the complexity of exact a posteriori state estimation goes
as O(N®T). In [11], approximate state estimation was per-
formed, with O(N3T) complexity. Clearly, as the conditioning
context increases, exact state estimation becomes practically
intractable. Even with high order conditioning contexts, there
are ways of keeping the decoding complexity manageable, but
at the price of estimation accuracy. One practical solution is
to use greedy techniques, e.g. [4], where hard state estimation
was performed ”one pixel at a step”. In this approach, when
estimating the state at a current pixel of interest, one uses as
conditioning context the decoded values in a causal neighbor-
hood of this pixel. The storage complexity of this approach
will still grow exponentially with conditioning order. How-
ever, the computational complexity is now only linear in the
state cardinality, i.e. O(NT). A related soft state estimation
technique was proposed in [6]. Here, a posteriori state prob-
abilities are computed “one pixel at a step”, using previously
computed a posteriori probabilities in the causal neighborhood



of the current pixel. However, unlike the “hard” case[4], the
decoding complexity for the approach in [6] still grows expo-
nentially, in particular O(N*T'T), with K the (causal) con-
ditioning order. There are also some techniques for improving
upon hard greedy searches. In [2], an iterative hillclimbing
algorithm was proposed with guaranteed improvement over
greedy search. In this approach, instead of optimizing “one
pixel at a step”, one jointly optimizes over an entire row or col-
umn at each step, achieved via dynamic programming. More-
over, whereas the greedy search in [4] terminates after one
pass over the image, in [2] the solution can be iterated, with
multiple row/column sweeps taken over the image, and with
the performance guaranteed to improve (in the sense of the
defined objective function) with each image pass. The com-
plexity of this method is O(NT L), with L the number of image
iterations taken. From the discussion above, we can see that
there is a fundamental difference in complexity in the greedy
hard and soft estimation cases. Computation grows linearly
in N in the hard case and as N¥ in the soft case. However,
it is also well-known that soft estimation techniques generally
outperform their hard counterparts. The reason being that
they preserve many hypotheses for the hidden state sequence
(and attach associated probabilities), whereas hard state es-
timation preserves only one such hypotheses. In the present
paper, we derive a general decoding technique that aims to
capture some of the advantage of higher order soft estima-
tion while still retaining low complexity. We thus suggest an
approach which can bridge the performance gap between low
order (low complexity) and high order (high complexity) JSC
decoding. Our approach is applicable to both non-predictive
and predictive coding systems, as will be discussed in the se-
quel.

II. NEw JSC DECODING FORMULATION

Preliminaries

Consider the problem of source coding, with transmission of
the encoded information over a noisy channel. The communi-
cations system model is shown in Fig. 1. For clarity’s sake, we
only consider the memoryless channel case here. The source
encoder takes X; € R and produces an output index I; € Z,
with Z the quantization index set {0,1,..., N —1}. The index
is transmitted over a discrete channel, resulting in a possibly
corrupted index Jy, from the same set Z, according to the
(assumed constant) channel transition probabilities {P[J; =
je|It = i:]}. We define the data source, from a discrete-time
random process, as the sequence X = (Xo, X1,...,X7-1),
the encoder’s index sequence I = (Io, I1,...,Ir—1), and the
received sequence, J = (Jo, J1,...,Jr-1). As in prior work
[8, 12, 13], we assume a Markovian model for the sequence of
transmitted indices, e.g. in the first order case,

Pllo =io, Iy = iy, ..., I; = iy]
¢
=Pl =io] [[ Pl = ii|lis = 1], W (1)
=1
All the probabilities {P[Jt = jtlIt = it]}, {P[I() = io]},
{P[I; = it|Is—1 = i:+—1]} are assumed known at the decoder.
In practice, the source probabilities are estimated based on
an encoded training set. In the case of a binary symmet-
ric channel, the channel is completely specified by a single
parameter, ¢, the channel bit error rate. The JSC decoder
objective is to produce an approximation of the source X, de-

noted £(4°9) = (389, 2{4°) . 2{d°)) given a realization of

the noisy index sequence, j = (jo, j1,...,jr—1) '. The knowl-
edge brought to bear by the decoder consists of the source and
channel probability models.

The approach that we suggest builds on/leverages previous
decoding techniques, such as [8]. Accordingly, we first review
[8] and then show how our new approach both uses previous
decoding results and, further, improves upon them.

Review of SAMMSE Decoder

The SAMMSE decoder[8] views the tandem of source and
channel encoder as a hidden Markvo model. Thus, the de-
coder is based on estimation of the hidden state sequence
(encoded source symbols) I given the the noisy symbol se-
quence J. The decoder first finds the a posteriori proba-
bilities P[I; = i|J = j] Vt by using the well known for-
ward/backward algorithm[1]. These a posteriori probabili-
ties are then used in a conditional mean estimator to recon-
struct/estimate the quantization levels associated with each
transmitted symbols. The derivation of the method is sum-
marized as follows.

The overall distortion, caused by quantization error and

=T-1
decoder error, is given by D(z,#(49) = ‘ 3 d(we, #%°9),
t=0

where d(z;, £{%°Y) = (z, — £{°”)2. The decoder’s objective
is to minimize the expected distortion over (4 given the
received noisy symbol sequence j. This equation is given by
E[D(z, )| = j] (2)

t=T-1

(0% Bld(e, 3L =1]) PLI = I =PI =]
t=0

2Pl =jIL =PI =i

2

The authors in [8] have shown that directly working with
this equation is not practical. Therefore, the approximation
Eld(zs, #%°N|I = i] = Eld(z, #%°?)|I, = i] is needed. By
using this approximation, (2) can be further reduced to mini-
mizing

|Bled I = 1] - &(*|"PIL =L = 4], (3)

t=T—-1l=L

t=0 I=1

where
> plJ = j|lL=4]P[I =i

2

The probabilities P[I = 3] can be obtained assuming a low

order Markov model as shown in equation (1). For a memo-

ryless channel, the probabilities P[J = j|I = 3] can be simpli-
t=T—1

fied to [[ P[J: = je|lt = 4] with P[J = j|I = i] assumed
=0

known. 1\7Iinimizing (3) leads to choosing the reconstructed
~ (dec) . . .
values &, according to the sequence-based approximation

minimum mean squared error (SAMMSE) rule:

I=L
igdeC) _ ZE[xtUt =1|P[I; =1|J = j], Vt. (5)
I=1

Without knowledge of j, the decoder output Xt(dec) is treated
as a random variable. However, the decoding rule is a deterministic
function of the received sequence j. For purpose of retaining com-
pact notation, we do not explicitly indicate the dependence on j in
i(dec)_



P[I, = IllJ = j] can be obtained by using the for-
ward/backward algorithm[1] with E[x;|I; = I] again estimated
from a large training set.

There are several ways to improve SAMMSE decoding.
One strategy is to increase the order of the Markov model for
{I;}. However, the complexity of the forward and backward
recursions needed to calculate the a posteriori probabilities
grows exponentially with the Markov order K, i.e. the com-
plexity is O(N 1 T). This limits the practical feasibility of
this approach. A second potential strategy is to use “memory-
enhanced” decoding, as suggested in [8]. This approach uses
a higher resolution decoder lookup table and thus obtains a
more accurate conditional mean estimate. For the case of sec-
ond order (enhanced memory) decoding, the decoding rule is:

EXj] =YY Quec(l,m)PlI, =1,I,-1 = m|j], (6)

1

where Q;L(I,m) = E[X¢|l; = l,I;_1 = m]. It should be
emphasized that the decoder memory can be usefully cho-
sen to be second or higher order irrespective of the order of
the Markov model for {I;} ?. Unfortunately, the number of
summations increases linearly, and thus the number of sum-
mands ezponentially, with the order of the decoder memory.
Moreover, the complexity of calculating the a posteriori proba-
bilities P[It, It—1,...,It—k,44+1]j], also increases exponentially
with the decoder memory. N

While both increasing the Markov order and increasing
the decoder memory improve performance, there is a heavy
price in complexity. In the next section, alternatively, we will
demonstrate a way of improving the SAMMSE decoder with
only modest increases in complexity.

A New JSC Decoder

As just discussed, JSC decoding can be improved by in-
creasing the Markov order or the decoder’s memory, albeit
with exponential growth in complexity. Alternatively, here
we suggest a heuristic way to increase the decoder “order”
with minimal growth in complexity. In particular, we suppose
that if the decoder model is not fully capturing the memory
in the source, then it may very well be the case that there
is unexploited partial correlation between the source X; and
both causal {X{%? k > 0} and anticausal {Xt(iekc),k > 0}
decoded values. In making this statement, we are recognizing
that X't(fekc)(l) is truly a random quantity, as it is a function
of the random sequence J. If there is untapped correlation,
this suggests the possibility of improving the decoding result
X9 yia, linear filtering, i.e. forming

L.—1 Lnc
0 = 30 g0+ 3 akd(Y (D)
k=0 k=1

(7) amounts to a two-stage estimation procedure, with stan-
dard SAMMSE decoding first applied(5), followed by linear
filtering. Low order (e.g. K = 1) SAMMSE decoding fol-
lowed by the filtering in (7) is far less complex than SAMMSE
decoding based on a high order Markov model. The complex-
ity comparison will be further discussed in the experimen-
tal result section. It remains to determine the coefficients
Haw}, {a-r}}

In JSC decoding, e.g. [8, 12, 13], the approach often taken
is to assume an optimality criterion (such as MMSE or MAP)

21t is also not necessary for the conditioning context to be causal.
It could also be noncausal, e.g. E[X¢|I; = m,I;_1 =1,I141 = n].

and a statistical model and then to analytically derive a closed
form decoder expression. Alternatively, we take our cue from
training-based approaches to quantizer design, proposing a
training-based approach to the design of a JSC decoder that
captures residual redundancy in the source. The ultimate per-
formance is the MSE E[(X — X(9¢9)2] with the expectation
taken with respect to both the source and channel distribu-
tions. Now, as is often done in practice without proof, e.g.
[5], let us suppose that an ergodicity property holds, i.e., in
our case, that

T

|
-

li

T— o0

(z — 2%°9(j))” = E[(X — X“*))%],  (8)

Nl =

t

Il
=)

where we have emphasized the rule’s dependence on j =
(jo, j1,--.,jr—1). The motivation behind this is that, if (8)
holds, then one can choose the rule £ (j) to minimize a
least squares cost based on a large training set and a single
realization of the channel, j, with the reasonable expectation
that one is then (approximately) choosing the decoder to mini-
mize the MSE E[(X — X (4°))2]." A similar approach was taken
in [3] for a different source coding context and for optimization
at the encoder, not the decoder. The reasonableness of our er-
godicity assumption will be substantiated by our experimental
results. In particular, it will be seen that the decoding perfor-
mance optimized over the training set closely agrees with the
performance on multiple independent test sets.

Thus, the coefficients {{ax},{a—x}} can be chosen to min-
imize the least squares error (LSE) performance criterion,

T—Lpe—1

Yo (@ =&V (9)

t=L.—1

The LS-optimal coefficients are given by the standard LS so-
lution:

a=(x"x) X", (10)
with
~ (dec) ~ (dec) ~(dec)
~laeo) ~laeo (deyle e
A ec A ec ~ ec
Zq Ty e xT—Lc—an+1
xt = . . . . )
~(dec) ~(dec) ~(dec)
TLetlne-1 TLetLn. Tr_1
(11)
T
a = (aLc—l’aLc—2aaLc—3a o, -1, ,OL_an) ,and
z = (tr.—1,%0., - ,87—L,.—1)" obtained from a training

sequence. The resulting solution can be rewritten in the (ex-
plicit) form:

Le—1 N

inewded > (Y] Plli—k = Ujly(1)
k=0 =0
Lnc N

+ S ack(X Plls = Uly®),  (12)
k=1 =0

where y(I) = E[X|I =1].

This form is suggestive of a way to further improve the so-
lution. In particular, the quantities y(I) = E[X|I = [] are
usually estimated based on an encoded training set. Alterna-
tively, we can replace the products ary(l) by parameters py 1,



with the decoding rule now

L,—1N-1
ﬁgnereC) — Z Z Il/k,lP[It—k = l|l]
k=0 1=0
Lpe N—1

+D > poraPlIigs = 1],

k=1 1=0

(13)

The {pk, } can again be chosen to minimize the least squares
cost (9). The solution is again given by the form (10), but
this time with the data matrix defined as

P[1]4]

P[|4]

PlIr-r.-1,.|]]
PlIr—p.—L,c+1l]]

PlIr.4r,.-1l7] Pz +L,.l5] P[I7_1|j]

(14)
where

PIL|j] = (P[I. = 0|], P[I: = 1|4], ..., P[I. = N = 1|j])",

and

a = (Mchl,OaMchl,l, sy MLe—1,N—1,--., 0,05, HO,N—1,

T
H—1,05---s H=1,N—15-vey—Lpnc,05--- 7lu‘*L'nz:,N71) .

The performance of both (12) and (13) are evaluated in our
experimental results. Next, we briefly discuss the implications
of our LS approach for predictive JSC decoding.

JSC Decoding for Predictively Encoded Sources

In [4, 6, 10, 13], a common JSC decoding strategy for pre-
dictively encoded sources (e.g. DPCM) is to first form a JSC
decoding estimate of the prediction residual and then feed this
estimate to a standard (noise-free) DPCM decoder. For ex-
ample, in [10], for the case of first order DPCM, the proposed
decoding rule was:

300 = azf:ﬁelc) + E[Zj], (16)

N-1
where E[Z:|j] = > c(l)P[I; = l|j] and c(I) = E[Z:|I; = 1].
Here, Z; is the plre(zliction residual and a is the prediction
coefficient. Note that E[Z;|j] is just the SAMMSE decoding
estimate of the prediction residual.

The main principle behind our LS decodin§ strategy is to
treat the standard JSC decoding outputs X % (J) as data,
i.e., as random observations, correlated with the true signal
X:. Accordingly, in the last section we designed linear filters
to provide an LS estimate of X; given {X{““(J)}. This ap-
proach improves performance at the cost of some increase in
implementation complexity, associated with the linear filter-
ing. However, the complexity increase is modest compared
with increasing the Markov order or using memory-enhanced
decoding[8]. In the predictive coding case, use of our LS strat-
egy can yield improved decoders with no complexity increase,
i.e. a fundamental improvement can be achieved using our LS
decoding strategy. Alternatively, further gains can again be
achieved with modest increase in complexity. Our LS design
strategy for JSC decoding of predictively-encoded sources was
proposed in [7]. Here we summarize [7]. The key observation

is that the predictive JSC decoding rule (16) is already in the
form of a linear estimator, based on the “observations” &/
and E[Z;|j]. This raises the question of whether the coef-
ficients (a,1) are optimal (or nearly so) in the least squares
sense, as the weights for these observations ?
Consider the more general estimator
& = azi™Y + BE(Z1),

(17)

with %% obtained from the standard decoding rule (16).
Le., suppose (16) is first applied, yielding {:&gd“)}, with the
optimal coefficients then sought to weight the values ﬁgielc )

E[Z:|j] in forming a new decoding estimate @ﬁ“ereC)

and

. For a

training set = (%o, Z1,...,27—1)" and a realization of the
channel j, the pair (o, () optimal in the least squares sense
again satisfies

(@B =@Tx)"'a’e, (18)
with
~(dec ~(dec ~ (dec
XT _ x(_l ) 33'(() ) x’(T—Z) . , (19)
E[Zo|j] E[Z:§] E[Z7-1]j]
~ (dec)

and with 7,/ an initial value. Our approach to JSC decoding
for predictively encoded sources[7], similar to the approach for
nonpredictive coding, is to use the LS-optimal coefficients in
the decoding rule (17).

Consider an example of a first order Gauss-Markov pro-
cess {X;} with correlation coefficient 0.95, N = 8 quantiza-
tion levels, a first order Markov model for the sequence {I;},
and a binary symmetric channel with bit error rate e = 0.05.
Residual redundancy is introduced by mismatching the pre-
diction coefficient, relative to the source correlation. Suppose
the prediction coefficient is chosen as a = 0.45. Experimen-
tally, we have found that this choice leads to good decoding
performance both for our system and for the standard JSC
decoder (which uses (a,1)). For this choice, we find that the
LS-optimal pair (based on a training set of 108 samples), is
(a, B) = (0.55,0.79), quite different from the values (0.45,1)
that give the standard rule. Moreover, averaged over 3 test
sets of size fifty thousand samples, the reduction in distortion
of this LS-optimal decoder over the standard JSC decoder is
10log 10(MSE of standard JSC/MSE of new JSC) = 0.41 dB.
Clearly, the standard JSC rule is not in general the optimal
way to combine the “observations” E[Z:|j] and #{%").

Even better performance is achieved by increasing the order
of the filter, i.e. forming:

Le
jgnewdec) _ Zakjiielf) + BE[Z4|j], L > 1. (20)
k=1

Moreover, while (20) only includes causal terms, our method
can also be applied to design a decoder that uses anticausal
terms {:ﬁgie,:),k > 0}, with the potential for additional gains
in performance. In the next section, we evaluate the LS design
approach we have developed here (and the various nonpredic-
tive and predictive decoding structures) in comparison with

conventional JSC decoding approaches.

I1I. EXPERIMENTAL RESULTS

We investigated our LS optimization approach for improv-
ing the performance of first order SAMMSE decoding. As



a source, we chose the first AC (AC1) DCT coefficient from
8x8 blocks of a gray scale image. This one dimensional AC1
source was created by 1) DCT transforming the image using
8x8 blocks, 2)collecting the same transform coefficients from
each of the 8x8 block to form 64 different coefficient “images”,
3)for each image, a 1D source is created by raster scanning;
We chose to encode the source with second highest variance
(AC1). As a source encoder, we used a scalar quantizer with
eight quantization levels (3 bit fixed length). This quantizer
was designed via the Lloyd algorithm using the AC1 source
extracted from 23 gray scale images. We chose the bit error
rate of our binary symmetric channel to be 0.05. Both the first
and second order SAMMSE decoders were designed based on
these images. The Markov model probabilities for these de-
coders were learned based on frequency counts from the AC1
coefficients for all 23 images. The first order SAMMSE de-

coder gave an average SQNR(lOloglgMa—gE) of 2.91 dB over
these 23 image source. The second order SAMMSE decoder
based on the same source, gave an average SQNR of 4.52 dB.

For our method, we first designed an LS-optimal filter for
the first order SAMMSE decoding result based on the decoder
form (12). Our decoding performance was tested on all 23
images with LS filter coefficients optimized for each image .
The result is shown in Figure 2. In this Figure, the ‘number of
filter’ taps include both causal and anticausal coefficients. The
number of filter taps increases by adding one tap from causal
and one tap from anticausal context alternately, initialized by
one causal filter tap. Let us consider the case when L. = 3
and L,. = 2. With these filter taps, only a small amount
of side information is needed to specify the filter coefficients
to the decoder for each image. The resulting averaged LS-
optimal performance was 4.12 dB. This is approximately 1.2
dB better than using only a first order SAMMSE decoder,
and is only approximately 0.4 dB worse than a second order
SAMMSE decoder. In this case, the LS decoder complexity
is roughly 8 % higher than first order SAMMSE and roughly
7.4 times less complex than second order SAMMSE.

We also designed an LS-optimal filter that filters the a pos-
terior probabilities of a first order SAMMSE decoding result
based on the decoder form (13). The result is shown in Fig-
ure 3. In this figure, the number of filter taps also include
both causal and anticausal coefficients. Each “tap” in this
case corresponds to eight coefficients. These 8 coefficients are
associated with eight possible decoded symbol values at each
symbol time. The number of filter tap sets py increases in the
same fashion as in Figure 2. Let us note the case when there is
only one set of filter taps. The resulting averaged LS-optimal
performance was 4.41 dB. This is approximately 1.5 dB better
than using only a first order SAMMSE decoder, and is only
approximately 0.1 dB worse than a second order SAMMSE
decoder. In this case, the LS decoder complexity is roughly
12.5 % higher than first order SAMMSE and roughly 7.1 times
less complex than second order SAMMSE. Compared to the
same computational complexity with 8 filter taps in Figure 2,
this approach is approximately 0.3 dB better.

In Table 1, a comparison between the standard predictive
decoder(16) and the LS optimized predictive decoder(20) us-
ing 10 causal coefficients is shown. This predictive result was
reported in [7]. In this experiment, we used a first order Gauss-
Markov source {X;} with correlation coefficient p = 0.95 and

3We found that only small performance gain was achieved if a
single “universal” filter {«} is used for all the images

with input white noise variance ¢2, = 1.0. A training set of 1
million samples was used for this decoder design. Three inde-
pendent test sets were generated, each of size 50,000 samples.
We assumed first order DPCM at 3 bits/sample. A uniform
quantizer was chosen, based on the dynamic range of the pre-
diction residual. For SAMMSE estimation of the prediction
residual E[Z:|j], we assumed a first order Markov model for
{I:}. This table shows the performance gain of using LS opti-
mization approach in the predictive case with different choices
of prediction coefficient.

IV. CONCLUSIONS

Although higher order modeling can improve decoding per-
formance, the direct implementation of high order (>3)
SAMMSE decoding is typically too complex for modern com-
puters. In this work, we proposed a method to bridge the
performance-complexity gap between direct implementation
of low and high order SAMMSE decoding. We showed that
our LS filtering approach was able to increase decoding per-
formance with a small increase in computational complexity.
Our LS filter is chosen to provide an estimate of the original
source via a large training set. This approach provides a way
to approximate the effective order increase in the standard
approach without the exponential increase in computational
complexity. We have verified our approach by first designing a
LS filter for the decoding form (12). We then further improved
this approach by designing the LS filter for the form (13). The
LS filtering approach was also applied to predictively encoded
sources with a significant decoding performance gain.

Figure 1: The basic communication system
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function of the prediction coefficient. In this case, the LS
decoder uses 10 causal samples.
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