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Abstract

Multimedia communication research and development often requires computationally intensive

simulations in order to develop and investigate the performance of new optimization algorithms.

Depending on the simulations, they may require even a few days to test an adequate set of con-

ditions due to the complexity of the algorithms. The traditional approach to speed up this type

of relatively small simulations, which require several develop-simulate-reconfigure cycles, is in-

deed to run them in parallel on a few computers and leaving them idle when developing the

technique for the next simulation cycle. This work proposes a new cost-effective framework

based on cloud computing for accelerating the development process, in which resources are ob-

tained on demand and paid only for their actual usage. Issues are addressed both analytically and

practically running actual test cases, i.e., simulations of video communications on a packet lossy

network, using a commercial cloud computing service. A software framework has also been de-

veloped to simplify the management of the virtual machines in the cloud. Results show that it is

economically convenient to use the considered cloud computing service, especially in terms of

reduced development time and costs, with respect to a solution using dedicated computers, when

the development time is higher than one hour. If more development time is needed between sim-

ulations, the economic advantage progressively reduces as the computational complexity of the

simulation increases.

Keywords: Multimedia Simulations, Cloud Computing, Video Communication, Amazon EC2,

Cloud Cost Comparison

1. Introduction

Nearly all works that propose new algorithms and techniques in the multimedia communica-

tion field include simulation results in order to test the performance of the proposed systems.
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Validation of new algorithms and ideas through simulation is indeed a fundamental part of this

type of research due to the complexity of multimedia telecommunication systems.

However, the performance of the proposed systems has to be evaluated in many different net-

work scenarios and for several values of all the key parameters (e.g., available bandwidth, chan-

nel noise). Moreover, to achieve statistically significant results, simulations are often repeated

many times and then results are averaged. In addition, for research purposes, software and sim-

ulators are usually developed only as a prototype, i.e., not optimized for speed. For instance,

the video test model software available to researchers is usually one or two order of magnitude

slower than commercial software which, however, might not be suitable for research, since it

does not come with the source code needed to experiment with new techniques.

As a consequence, the time spent in running such type of simulations and getting results might

be significant, sometimes even a few days. Interpreting such results leads to performance im-

provement and bug fixes that need to be tested again with other simulations. Focusing on the

development stage of these simulations and relatively small size simulations implies that there

is the potential for several development-simulation-reconfiguration cycles in a single day, and

computational resources are idle between simulation runs. Therefore, the time needed to get

simulation results play a key role in trying to speed up the research activities.

A commonly used approach to speed up simulations is to run them in parallel on several

computers. However, this approach strongly depends on several variables, e.g., computer power

and availability. Buying new, dedicated computers might not be affordable in case of small

research groups since the number of computers should be high and their usage ratio would be low

due to the dead times between the various simulation runs needed to improve the algorithms and

fix bugs. Accessing large computer resources could be difficult as well since currently it is not

easy to acquire resources to spend in computation costs when the hardware is not owned. Indeed

in typical research projects which include funding for multimedia communication research, high-

performance computing is not seen as one of the primary goal of the project, and costs are usually

dominated by items such as staff and development of testbeds. Therefore, the cost and risk of

acquiring a significant number of computers entirely rest on the research group.

An effective technique to speed up simulations could be to rent computing resources in the

cloud and run the computations in parallel, however there is a significant lack of works in lit-

erature that quantify the advantages or disadvantages of such a solution especially in terms of

economic costs in a practical case. This paper addresses this issue by providing quantitative

results, including cost comparisons, that can help in taking the most effective decisions.

Note that the type of scientific tasks considered in this work does not fit well into the class of

high performance computing (HPC) problems, since in that case requirements are different: the

problem is well known, and algorithms to solve it are well tested. The requirement is generally

limited to run those type of algorithms in the most cost-efficient way, which typically implies they

are batch-scheduled. In the considered scenario, instead, researchers wants to run the simulation

code as soon as possible to speed up further improvements.

The type of simulations addressed in this work are better described by the many task com-

puting (MTC) definition, which denotes high-performance computations comprising multiple

distinct activities, coupled via file system operations [1]. Multimedia communication simula-

tions considered here are fully parallelizable by nature, making them perfectly suitable for a

cloud computing environment. The possibility to parallelize simulations stems from the fact that

results are usually averaged on a number of different simulation runs that do not have dependency

among them. Moreover, using several values for the parameters as the input of the algorithms

adds another dimension to the problem which again increases the possibility to further parallelize
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the simulation.

The contribution of this paper is twofold. First, it provides a simple software framework

that can be used to automate all the operations involved in setting up and manage the cloud

environment for the specific simulation to be run as well as to efficiently and quickly collect

the simulation results. Second, it analyzes the cost-performance tradeoff using several actual

simulation examples taken from the video communication research area, i.e., H.264/AVC video

communications on a packet lossy channel. An analytical approach is employed in order to

investigate both the economic costs and the performance of the proposed approach. Moreover,

actual prices of a major commercial cloud computing provider are used to quantify, in a practical

way, the suitability, economic profitability and development speed up of employing the cloud

computing approach for the relatively short scientific simulations, such as the ones faced by

many researchers, in a realistic scenario where the typical work pattern of researchers is also

considered, i.e., they do not work 24 hours while computers do.

The paper is organized as follows. Section 2 analyzes the related work in the field. Then, Sec-

tion 3 investigates the requirements of typical simulations in the multimedia communication field

and their suitability for cloud computing. Section 4 describes the developed software framework

to automate running simulations in the cloud. In Section 5, a brief performance analysis of the

various instances in the Amazon cloud computing infrastructure is presented. Section 6 describes

the case studies used in this work, followed by Section 7 which analytically investigates the cost

performance tradeoffs with practical examples in the case of both a single simulation and a whole

research activity comprising several simulations. Conclusions are drawn in Section 8.

2. Related work

Some works have been presented in recent years on the profitability of using cloud com-

puting services in order to improve the performance of running large scientific applications.

Cloud-based services indeed claim that they can achieve significant cost savings over owned

computational resources, due to the pay-per-use approach and reduced costs in maintenance and

administration which are spread on a large user basis [2].

Until recently, most of the scientific tasks were run on clusters and grids, and many works

explored how to optimize the performance of scientific applications in such specific contexts. A

taxonomy of scientific workflow systems for grid computing is presented in, e.g., [3]. However,

cloud is not a completely new concept with respect to grids, it indeed has intricate connection

to the grid computing paradigm and other technologies such as utility and cluster computing, as

well as with distributed systems in general [4].

Several works investigated several different aspects involved in running scientific workflows

in the cloud, for instance focusing on optimal data placement inside the cloud [5], the overall

experience and main issues faced when the cloud is used [6] and the suitability of cloud storage

systems such as Amazon S3 for the scientific community [7].

Other works addressed the costs of using cloud computing to perform tasks traditionally ad-

dressed by means of an HPC approach with dedicated computational resources. Findings indicate

that in this scenario profitability is somehow limited, at least with current commercially available

cloud computing platforms [2]. Indeed the performance of general purpose cloud computing sys-

tems, such as the virtual machines provided by Amazon [8], are generally up to an order of mag-

nitude lower than those of conventional HPC clusters [9] and are comparable to low-performance

clusters [10]. Nevertheless, due to the savings achieved by means of the large scale of these cloud

3



computing systems, they seem to be a good solution for scientific computing workloads that re-

quire resources in an instant and temporary way [11], although capacity planning can be quite

difficult since traditional capacity planning models do not work well [12]. Many works employ

benchmarks aimed at predicting the performance of complex scientific applications. Often, these

benchmarks focus on testing the efficiency of the communication between the various computing

nodes, which are an important factor in some types of applications. For instance, [13] focuses

on establishing theoretical performance bounds for the case of a large number of highly parallel

tasks competing for CPU and network resources.

The type of simulations addressed in this work fits into the many task computing (MTC) def-

inition [1]. MTC has been investigated, for instance, in [14], where a data diffusion approach is

presented to enable data intensive MTC, in particular dealing with issues such as acquiring com-

puting and storage resources dynamically, replicating data in response to demand, and schedul-

ing computations close to data both under static and dynamic resource provisioning scenarios.

Frameworks for task dispatch in such scenarios have also been proposed recently, such as Fal-

con [15], which simplify the rapid execution of many tasks on architectures such as computer

clusters by means of a dispatcher and a multi-level scheduling system to separate resource acqui-

sition from task dispatch. These frameworks are complemented by means of languages suitable

for scalable parallel scripting of scientific computing tasks, such as Swift [16].

Some works have been presented to compare the performance achieved by means of the cloud

with other approaches based on desktop workstations, local clusters, and HPC shared resources

with reference to sample scientific workloads. For instance, in [17] a comparison is performed

among all these approaches, mainly focusing on getting reliable estimate of prediction of per-

formance of the various architectures depending on the workflows. However, no economic cost

comparisons between the different platforms are shown. Another work [18] consider a practical

scientific task traditionally run on a local cluster. The authors study a cloud alternative based

on the Amazon infrastructure, first developing a method to create a virtual cluster using EC2

instances to make portability easier, then investigating how the different data storage methods

provided by Amazon impact on the performance. While costs of Amazon cloud are considered

in details for the proposed architectures, no cost comparisons with the previous cluster-based

architecture are presented.

This work helps in quantifying the economic advantage and potential drawbacks in replacing

computers dedicated to simulation in a small research lab with a cloud computing solution. To the

best of our knowledge, no works have addressed this issue so far with reference to the relatively

small size simulations presented in this paper, apart from our short preliminary study presented

in [19]. Even though this might seem a quite peculiar simulation scenario, many researchers, at

least in the multimedia communication field, share the need to perform simulations of the size

discussed here. Note also that the computational requirements of these simulations are constantly

increasing due to the tendency to move towards high quality, high resolution images and video,

urging researchers to find cost effective ways to deal with these type of simulations.

3. Analysis of Simulation Requirements

Typical simulations in the multimedia communication field involves running the same set of

algorithms many times with different random seeds at each iteration. The objective is to evaluate

the performance of the system under test by averaging the results achieved in various conditions,

e.g., different realizations of a packet lossy channel, so that confidence intervals are minimized.

Clearly, such a setup allows many simulations to run in parallel, since no interaction among them
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is required except when merging the results at the end of the simulation. Despite the conceptual

simplicity, the actual computational load can be high since multimedia codecs might be proto-

types only, not optimized for speed, as well as channel models or other robustness techniques

might be complex to simulate. Moreover, consider that to achieve statistically significant re-

sults many different test signals, e.g., video sequences, should be used in the experiments so that

techniques are validated across a range of different input conditions.

Other similarly heavy tasks might include extensive precomputations in order to optimize

the performance of algorithms that are supposed to run in real time once deployed in an actual

system. As an example, consider a system optimizing the transmission policy of packets in a

streaming scenario. Some precomputed values regarding the characteristics of the content, such

as the distortion that would be caused by the loss of some parts of the data, can be useful to the

optimization algorithms, but values need to be computed in advance (see, e.g., [20, 21]).

Therefore, due to the typical peculiarities of multimedia communication simulations, very lit-

tle effort is needed to parallelize them. Often, no interaction is needed until collection of results

(or not at all when considering different input signals). Even in more complex cases, such as pre-

computation, usually multimedia signals can be easily split into different independent segments,

for instance group of pictures (GOP) in video sequences, and processed almost independently.

Therefore, the simulation types described in this section can take full advantage of the avail-

ability of multiple computing units, as in a cloud environment. Parallelism can be exploited both

at the CPU level, using more CPUs, and within the CPU taking advantage of multiple cores. As

with modern computers, cloud environments offer multicore CPUs in the highest performance

tiers, which indeed require parallelism for a cost effective exploitation of the resources.

4. The Cloud Simulation Software Framework

In this work we focus on the Amazon AWS offer as of October 2011, which provides the

“Elastic Compute Cloud” service, in brief “Amazon EC2”, that includes a number of instance

types with different characteristics in terms of CPU power, RAM size and I/O performance. The

Amazon AWS platform allows to control the deployment of resources in different ways, for in-

stance by using a web interface or by means of an API, available for different languages. In all

cases (web or API), the deployment of virtual systems in a remote environment and their mon-

itoring requires several operations, although conceptually simple. While for simple operations

and management of virtual servers this task can be easily accomplished by a human operator

through, e.g., the web interface, a more time efficient system is needed to manage at the same

time the activation, configuration and deactivation of a number of instances in order to automat-

ically create the requested virtual environment needed by the simulations. A simulation could,

in fact, require to create, for instance, ten virtual machines, each one fed with different input

parameters so that it operates on the correct set of data, then check that every one of them is

correctly running and finally resulting data has to be collected in a single central point.

Since the simulations considered in this work are quite short when carried out in the cloud

computing environment, the time spent in setting up the appropriate simulation environment

(e.g., activating instances, feeding them with the correct startup files, etc.) must be minimized

otherwise the advantage of cloud computing in terms of speed is reduced. To minimize the set

up time, an automatic system is needed.

A number of frameworks have been proposed in literature to address the issue of dispatching

tasks to a computer system (e.g., a cluster or a grid) where they are usually received by batch

5



Figure 1: General architecture of the proposed cloud simulation software framework.

schedulers. However, their dispatching time can be high [15] because they usually support rich

functionalities such as multiple queues, flexible dispatch policies and accounting. Lightweight

approaches have also been proposed, for instance the Falkon framework [15], which reduces the

task dispatch time by means of eliminating the support for some of the features.

However, in a relatively small size simulation with almost no dependencies between the tasks

the use of such frameworks, aimed at large scale scientific simulations, provides much more fea-

tures that the ones effectively needed. For these reasons, we designed and implemented our

software framework, named Cloud Simulation System (CSS), with the aim to create a very

lightweight support for the execution of our simulations. The main design criteria were to be

able to automate the execution in the cloud of the simulations of the type considered in this

work, and to automatically take care of all the aspects of configuration of the cloud, e.g., starting

and terminating instances, uploading the initial data for each instance and downloading the re-

sults. Note that these aspects must be adapted to the specific cloud technology used regardless of

which framework is employed, therefore also if more complex frameworks were used, the time

reduction in setting up the framework would have been limited, also considering the time needed

to learn and adapt the features of a new framework for our aims.

Figure 1 shows the general architecture of the CSS. The software has been developed in the

Java language in order to be portable on different platforms. First, an offline step is needed, that is,

the preparation of a virtual machine image, named AMI in the Amazon terminology, containing

the tools needed for the simulation and a few parameterized commands, usually scripts, that can

both run a set of simulations (controlled by an input file) and save the simulation results to a

storage system, for instance the S3 provided by Amazon.

One of the key component of the architecture is the controller computer, which is initially fed

with a simulation description, in XML format, of the activities to carry on, including the specific

set of input parameters for each single EC2 instance. The controller automatically performs a
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<?xml version="1.0" encoding="UTF-8"?>

<simul tag="Sim1">

<options>

<cloudRegion>EU_Ireland</cloudRegion>

<amiID>ami-12345678</amiID>

<vmsKind>c1.medium</vmsKind>

<cloudKeyPair>ec2-key</cloudKeyPair>

<s3cmdLoc>/home/ubuntu/s3/s3cmd/s3cmd</s3cmdLoc>

<s3configLoc>/home/ubuntu/.s3cfg</s3configLoc>

</options>

<cloudVM>

<commandList dataToSave="res*.txt"

execLoc="/home/ubuntu/simul/h264/">

<command>./sim.sh list_set_3.txt</command>

</commandList>

</cloudVM>

...

</simul>

Figure 2: Sample simulation description file for the developed cloud simulation software framework.

number of activities needed to ensure the successful execution of the set of simulations specified

in the XML file. The main activities include:

1. activating new instances;

2. running the simulation software;

3. periodically monitoring the status of the instances to get early warnings in case some soft-

ware included in the simulation fails or crashes;

4. checking for the end of the simulation;

5. downloading the results from the remote storage systems.

In more details, the system creates instances using the API provided by the Amazon Java SDK.

The software is packaged in a runnable JAR archive and the main options and operations that will

be performed are specified in the XML configuration file. Several parameters can be specified,

such as the number and type of Amazon instances to use, in which region they will be launched

and which commands they will execute at startup. It is also possible to specify a user defined

tag to run more than one simulation set at the same time in the cloud. A sample file is shown in

Fig. 2. A separate file contains the access credentials to the Amazon AWS platform.

The monitoring of the simulation is performed through a set of scripts that will periodically

connect to all the instances involved in the simulation and check their memory and CPU utiliza-

tion. If any of these metrics show anomalous values an automatic email alert will be sent to a

predefined address, including the details of the instances that are having issues.

When all simulations end, files are downloaded from the Amazon S3 storage system, used

by all the instances to save their results. The application developed in this framework will au-

tomatically detect the end of the simulation and then download the resulting data in the local

system.

The described framework can efficiently run simulations in the Amazon AWS platform. In

order to optimize the cost performance tradeoff, suitable options must be chosen in the config-

uration file, for instance the most efficient type of EC2 instance for the given simulation. The
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Table 1: Characteristics of the available EC2 instances and costs in the EU region (Oct. 2011).

Name ECU/core # cores RAM I/O cost/h cost/h/ECU
[Symbol] [Ei] [νi] (GB) perf. ($) ($) [ϕi]

std.small 1 1 1.7 Moderate 0.095 0.095

std.large 2 2 7.5 High 0.38 0.095

std.xlarge 2 4 15 High 0.76 0.095

hi-cpu.medium 2.5 2 1.7 Moderate 0.19 0.038

hi-cpu.xlarge 2.5 8 7 High 0.76 0.038

hi-mem.xlarge 3.25 2 17.1 Moderate 0.57 0.088

hi-mem.dxlarge 3.25 4 34.2 High 1.14 0.088

hi-mem.qxlarge 3.25 8 68.4 High 2.28 0.088

micro up to 2 1 0.613 Low 0.025 -

next sections will investigate how to configure the developed framework in order to maximize

the performance and minimize the cost of running the simulation in the cloud.

5. Performance Analysis of EC2 Instances

The computational power unit used by Amazon is the EC2 compute unit (ECU), defined as the

equivalent to the CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor. Table 1

summarizes the characteristics of the Amazon EC2 offer in the EU region as of Oct. 2011 [22].

Note that there is a particular type of instance, named micro, whose characteristics cannot be

easily defined as the other ones. More details about the micro instance are presented later in this

work. The key quantities peculiar of each instance are represented using the following symbols:

ϕi is the cost/h/ECU for instance type i, νi is the number of cores and Ei the number of nominal

ECU per core. The meaning of all the symbols used throughout the paper is reported in Table 2.

5.1. Raw Computing Performance

First, the CPU performance of the different instances has been assessed by using a simple

CPU-intensive program, i.e., computing the MD5 hash of a randomly-generated 100 MB file.

The experiment is repeated 100 times to cache the file into the RAM so that the performance of

the storage system does not affect the measurements. Results are reported in Table 3.

The effective computing power P
(1)
i

of instance i is computed as:

P
(1)
i
=

t
(1)
std.small

· P
(1)
std.small

t
(1)
i

(1)

where t
(1)
i

is the time, as seen by the user, needed by the instance to compute the MD5 value 100

times using a single process. As a reference, the P
(1)
i

value for the std.small has been set equal

to 1.00, so that values can be directly compared with the nominal speed in ECU as declared by

Amazon AWS. Superscript (1) indicates that the performance is achieved using only one core.

Note also that the micro instance differs from the others since it is not suitable for a continuous

computing load. It provides a good alternative for instances that are idle most of the time but they

sometimes must deal with some short bursts of loads, such as low-traffic web servers. Moreover,

there are no guarantees that a minimum amount of processing power will be available at any time

even when the instance is running, making it a sort of “best effort” offer. For the micro instance,
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Table 2: Symbols used throughout the paper.

i Instance of type i

Ei ECU/core for instance type i

νi Number of cores of instance type i

ϕi Cost ($)/h/ECU of instance type i

P
(N)
i

Effective computing power of instance type i using N cores

p
(N)
i

Effective computing power parameter, i.e., P
(N)
i

normalized by Ei

C
(N)
i

Cost ($) of one hour of instance type i considering its p
(N)
i

n Number of processes running in parallel

S Computing energy (ECU·h) needed to run a simulation

K Number of instances used to run the simulation in the cloud

TS Time (h) required to run a simulation, requiring energy S, in the cloud

CS Cost ($) of running a simulation, requiring energy S, in the cloud

η Instance usage efficiency in the cloud

TD Time (h) spent to study and modify the algorithm in each cycle

TC Total time (h) of one cycle

nPC Number of PCs needed to achieve the same time performance of the cloud

LPC Lifetime (h) of a PC

CPC Cost ($) of a PC including running costs for LPC

Ncy Number of cycles used for the development of a given technique

Ccloud Total cost ($) of the cloud solution

CnPC
Total cost ($) of the solution based on n PCs

f Time increase factor due to operators working during daytime only

Cratio Ratio of the cost of the cloud solution to the cost of the nPC-based solution

Table 3 shows the ECU/core declared by Amazon while time and effective computational power

are averaged over several cycles of burst and slow-down periods. For completeness, note that

when the micro instance performed at maximum computational speed, it reached P(1) = 3.38 in

our experiments, while it provided only P(1) = 0.09 while in the slow phase. Due to this behavior,

this type of instance will not be considered further in this work.

When multiple cores are available on a given instance processes can be run in parallel. Fig-

ure 3 shows the effective computing power of the various instances while performing the same

CPU-intensive task (MD5 hash) using a different number of processes in parallel. The effective

computing power parameter p(N) is given by Eq. (2), where the time interval t
(N)
i

refers to the

time elapsed between the start of the first process and the end of the last running process, as

p
(N)
i
=

t
(1)

std.small
· P

(1)

std.small

t
(N)
i
· Ei

. (2)

Note that, differently from Eq. (1), the p value is normalized by the nominal ECU/core value Ei,

so that values can be easily compared among them. As expected, performance tends to slightly

decrease when the number of processes increases. This result confirms that each instance can be

loaded with CPU-intensive parallel processes up to the number of cores without incurring in an

unreasonable performance reduction.
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Figure 3: Effective computing power of parallel CPU-intensive tasks on different instances (normalized by the nominal

ECU/cores).

Figure 4 shows the cost, per process, for one hour of each instance type for each effective

computing power unit p as previously defined. The cost is defined as

C
(N)
i
=

p
(N)
i

νiEiϕi · n
(3)

where νiEiϕi is the cost of one hour of instance i and n is the number of processes running in

parallel. Since the cost of the instance is constant regardless of the number of processes running

on it, clearly the cost per process decreases when the number of processes run in parallel in the

instance increases, up to the number of available cores. Note that each single point in Fig. 4

considers the effective computing power units p that can be achieved with that specific number

of processes. Considering the MD5 hash task, the best performance cost ratio is provided by the

hi-cpu.xlarge instance type, followed by the std.xlarge, std.large and hi-cpu.medium.

Table 3: Experimental measurements of CPU computing performance of EC2 instances, using only one core. Time refers

to the MD5 task.
Nominal Effective comp. power P

Name ECU/core Time (s) (std.small=1.00)

std.small 1 100 1.00

std.large 2 36 2.78

std.xlarge 2 33 3.03

hi-cpu.medium 2.5 42 2.38

hi-cpu.xlarge 2.5 32 3.13

micro up to 2 152 0.66
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Figure 4: Cost per p units, for each process, depending on the instance type.

5.2. I/O Performance

In addition to CPU-intensive tasks, the I/O performance of the various instances has also been

measured. This is important since simulations often require I/O activity, especially when dealing

with uncompressed video sequences as it is generally the case with video quality simulations.

Table 4 reports the performance of the I/O subsystem, as measured by the iozone tool [23], for all

the instances considered in this work. The tool has been run with record size equal to 32 KBytes

and file size equal to a value larger than the maximum amount of available memory to reduce as

much as possible the influence of the operating system disk cache. For convenience, the column

named “I/O classification” reports the Amazon classification of the I/O performance, where “M”

means Medium and ”H“ means High. The performance is mostly aligned with the classification,

with higher values for the std instance types especially for write operations compared to the hi-

cpu instances. However, note that, as stated by Amazon [22], due to the shared nature of the I/O

subsystem across multiple instances, performance is highly variable depending on the time the

instance is run.

Table 4: Experimental measurements of I/O performance of the various instances, normalized values where hi-

cpu.medium=1.00 (last row shows absolute values in KBytes/s, using record size = 32 KBytes.)

I/O Random Random

Instance type classif. Read Write read write

std.small M 1.41 2.31 1.11 1.19

std.large H 1.52 2.32 1.64 1.58

std.xlarge H 1.46 2.10 1.91 1.52

hi-cpu.medium M 1.00 1.00 1.00 1.00

hi-cpu.xlarge H 1.47 1.29 1.50 0.92

hi-cpu.medium M 71317 14454 4545 8511
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Table 5: Parameters of some representative communication simulations.

Parameter Typical values Sim1 Sim2 Sim3

Resolution 352×288 to

1920×1080

352×288 704×576 1280×720

Pixels per frame 100K-2000K 101,376 405,504 921,600

Sequence length (frames) 180-300 300 300 300

Uncompressed video sequence

(MB)

26-890 43.5 174 395.5

Input files, scripts and executables

(MB)

0.5-1 0.61 0.60 0.64

Channel realizations 30-50 50 40 30

# of values for channel parameter

(e.g., SNR)

3-5 5 4 4

# of values for algorithm parame-

ter (e.g., maximum packet size)

3-5 5 4 4

# of sequences 4-5 4 4 4

Algorithm for quality measure PSNR, SSIM,

PVQM

PSNR SSIM PVQM

Total size of results (compressed)

(MB)

200-600 595 305 228

6. Case Study: Sample Simulations

6.1. Simulation Characteristics

In order to assess the performance in realistic cases, we describe the typical requirements of

some multimedia communication simulations typically used in the research activities. The most

important part of the dataset in multimedia experiments are the video sequences, typically stored

in uncompressed format. Generally, sequence length ranges from 6 to 10 s at 30 frames per

second, i.e., 180 to 300 frames. The corresponding size in bytes range from about 26 MB up

to 890 MB depending on video resolution, from CIF (352×288) to FullHD (1920×1080). Typ-

ically, four or five video sequences are generally enough to represent a range of video contents

suitable to draw reliable conclusions about the presented techniques. Since results are computed

as the average performance over different channel realizations, to achieve statistically significant

results from 30 to 50 different random channel realizations are needed. Moreover, often a cou-

ple of parameters can be varied, e.g., one in the channel model and one in the algorithms to be

tested, thus three (minimum to plot a curve) to five values have to be tested for each parame-

ter. Once each transmission simulation has been performed, the video decoder is run, e.g., the

H.264 standard test model software [24] as done in this work, thus obtaining a distorted video

sequence whose size in bytes is the same as the original uncompressed video sequence size. Fi-

nally, performance can be measured using various video quality metrics, ranging from simple

mean squared error (MSE) that can be immediately mapped into PSNR values [25], the most

commonly used measure in literature, to much more complex algorithms that tries to account for

the characteristics of the human visual system, e.g., SSIM and PVQM [26, 27]. Note that once

the previous performance metrics have been computed (typically, a single floating point number

for each frame of the decoded sequence), the decoded video sequence can be discarded, therefore

the maximum temporary storage occupancy is limited to the size of one video sequence. Table 5

provides actual values for three representative simulations, respectively a low, moderate and high

complexity simulation, that will be used as examples in the remaining part of the paper. Note that
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Figure 5: Relative time performance for various frame sizes and quality evaluation algorithms. Time is assumed to be

equal to one for CIF frame size (about 100 Kpixel), evaluated with PSNR.

once the number of combinations of parameters has been decided, it is also possible to compute

an estimate of the size of the results produced by the simulation, as shown by the last row of the

table.

6.2. Simulation Complexity

The time needed to run Sim1 sequentially on, e.g., an Intel i5 M560 processor at 2.67 GHz

with 4 GB RAM is about 29,500 s, i.e., more than 8 hours. It is clear that such a long time might

significantly slow down the development of transmission optimization techniques, since every

time modifications of the algorithm are made, for any reason, simulations should be run again.

Therefore, speeding up simulations is definitely interesting.

Using all the computing power available on the i5 computer requires 17,250 s to run Sim1. By

means of a CPU-intensive task such as the MD5 hash described in Section 5.1, it can be seen that

the computer performance is equal to about 2.75 ECU per core, i.e., 5.5 ECU total (assuming

the performance achieved by the std.small instance as the reference, equal to 1 ECU). Using the

same symbols introduced at the beginning of Section 5, νPC = 2 and EPC = 2.75.

Thus, we conclude that Sim1 would require about 26.38 hours on a 1 ECU processor, i.e., the

computing energy S needed to run it is 26.38 ECU·h. Considering the nominal computational

power stated by Amazon for the various instance types, the total cost would be 2.51 $ when using

the std family of instances or 1.00 $ using the cheaper hi-cpu family of instances. The value is

obtained by multiplying the computing energy S by ϕi, i.e., the cost/h/ECU shown in Table 1,

which is the same for all instances belonging to the same family. Note that the cost obtained

in this way is independent of the number of instances used to perform the simulation, since the

code can be significantly parallelized as discussed in Section 3.

Varying the size of the video frame or the algorithm used to measure the video quality perfor-

mance of the communication changes the computing energy needed for the simulation. Figure 5

shows that the amount of computations increases linearly with the frame size in pixels. Moreover,
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Table 6: Computing energy (in brackets the additional energy for compression of final results), execution time and cloud

costs on the cheapest family of instances depending on the simulation example.

Sim. ID Computing energy

(ECU·h)

Time on i5

PC (h)

Cloud instance cost

($)

Download of

results ($)

Sim1 26.38 (0.028) 4.80 1.00 0.06
Sim2 101.27 (0.014) 18.41 3.85 0.03

Sim3 316.94 (0.011) 57.63 12.04 0.02

Table 7: I/O performance depending on the simulation example.

Sim. ID Upload of sequences (only

first time) (s)

Upload script, exe and

setup data (s)

Store in

S3 (s)

Download of

results (s)

Sim1 4.4 < 1 30.0 94.4

Sim2 17.4 < 1 4.4 48.3

Sim3 39.6 < 1 1.1 36.3

the computational cost of running more complex quality evaluation algorithms is approximately

constant (in percentage) when compared with the PSNR algorithm. The SSIM algorithm incurs

in about 50% increase with respect to PSNR, while the PVQM requires about 180% additional

computation time.

Table 6 reports the complexity in terms of ECU·h of each sample simulation described in

Table 5, as well as the time needed to run them on the i5 PC using all CPU cores and the cost

of running them in the cloud using the cheapest family of instance types. For a high-complexity

simulation such as Sim3, the time required by the PC is more than two days.

6.3. Simulation Setup, I/O and Memory Requirements

As highlighted in Section 4, during the preparation phase of the AMI, sequences could be

preloaded in the AMI itself since it is likely that simulations have to be repeated many times dur-

ing the development of multimedia optimization techniques, as described in Section 7.2. Storing

data in the Amazon cloud (e.g. in the AMI) has a very limited cost, 0.15 $ to store 1 GB for

one month (fractions of size and time are charged on an hourly pro rata basis), which would be

enough to hold nearly 6 sequences of the type employed in Sim2. Data transfer costs to the cloud

are zero, while transferring from the cloud costs 0.15 $ per GB. Transfer speed is not an issue

since researchers can typically use high speed university network connections. For instance,

from the authors’ university in Italy the typical transfer speed to and from an active instance in

the AWS region in EU (Ireland) is about 11 MB/s and 6 MB/s respectively. In our tests, the most

critical part has been transferring from an active instance to the S3 storage within the Amazon

infrastructure, at the end of simulations when files have to be stored in S3. This could be done at

an average of 3.3 MB/s from each instance. Downloading large files from S3 to a local PC in the

university can be done at about 6.3 MB/s.

Table 7 shows the transfer times needed to load uncompressed sequences, transfer scripts,

executable and control files needed to run the simulation, and to collect the results, including time

to store data in S3 (for each instance). Note that in the provided examples, for simplicity, results

are stored in text files that are then compressed and downloaded. The data size is determined

by the number of combinations of parameters, which is the highest in Sim1, thus this implies

more data to download. However, the time is quite limited (about one minute and a half in the
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Table 8: Improvement of execution time using a RAM disk instead of the default Amazon storage (EBS) for the instance.

Hi-cpu.medium instance type.

Sim. ID Time reduction (%)

Sim1 4.0

Sim2 0.9
Sim3 0.1

worst case) if compared with the duration of the simulation, and could be further reduced by

storing data in a more optimized way, e.g., using a binary format to represent numbers instead

of text. The computing energy needed to compress result files has already been accounted for

in Table 6. In our experiments instance activation times have always been less than about 45

seconds, with typical values around 30, therefore they are comparable or sometimes less than the

time needed to download the results and much less than the time needed to run simulations at the

most cost-effective tradeoff point, i.e., about one hour, as it will be determined in Section 7.

The types of computations involved in multimedia communications are typically CPU inten-

sive. However, it is often necessary to move large amounts of data within the computer system

(e.g., reading and writing large files, that is, the video sequences). The operating system disk

cache almost always helps in this regard by using a large amount of memory for this purpose,

thus effectively keeping most of the data in memory. An alternative approach to ensure that

RAM is used to access these files could be to create, for instance, a RAM disks and keep the

most critical files there, such as the video sequence currently tested. We experimented with this

solution, moving all files to a RAM disk whose size is about 80% of the available memory, and

measuring the values shown in Table 8. Some modest improvements can be achieved in the case

of Sim1 (4%) while they are negligible for Sim2 and Sim3. An additional experiment, not shown

in the table, which uses the PSNR quality measure and the video frame resolution employed in

Sim3 shows 9.2% time improvement. We attribute this behavior to the fact that when the PSNR

quality measure is used, it is much more important to have fast access to the video sequence files

(both the original and the decoded one for the current simulation experiment) since the PSNR

only performs very simple computations. For more CPU-intensive algorithms such as SSIM and

PVQM there is almost no improvement in faster access to the video files. However, even 9.2%

time improvement is not sufficient to justify the use of instances with much more memory, which

cost more than twice for unit of computational power.

7. Analytical Analysis

7.1. Single Simulation

In order to mathematically characterize the time and cost needed to perform a given simula-

tion, the following notation is introduced. The amount of workload associated with the given

simulation is denoted by S , as already mentioned. Let K be the number of instances used to

perform the simulation, and i be the type of the instances, assuming that only one type is used to

run the whole simulation. The other variables, corresponding to the characteristics and costs of

each instance type, have already been defined in Section 3.

The time TS needed to perform a given simulation that requires S computing energy using K

instances of type i is given by

TS (i,K) =
S

νiEiK
. (4)
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Figure 6: Efficiency as a function of the actual time used to perform the simulation.

The value is inversely proportional to the number of instances K, i.e., the computation speed

can be increased as desired, provided that the simulation task can be split in a sufficiently high

number of parallel processes, by just increasing the number of instances K.

However, note that Amazon charges every partial hour as one hour, therefore the exact cost of

running the given simulation is obtained by rounding up the time used on each instance to the

nearest integer hour. Cost is given by

CS (i,K) = νiEiϕiK⌈TS (i,K)⌉ = νiEiϕiK

⌈

S

νiEiK

⌉

(5)

where the ⌈·⌉ function represents the smallest integer greater than or equal to the argument.

We introduce an efficiency value ηwhich represents the ratio of the time interval in which each

instance is performing computations to the time interval the instance is paid for, that is,

η =
TS (i,K)

⌈TS (i,K)⌉
. (6)

Eq. (6) presents the behavior shown in Figure 6. The function has periodic local maxima (value

equal to 1) when TS is an integer number of hours, and it can be lower bounded as

η >
TS

1 + TS

(7)

implying that efficiency tends to 1 for TS values much greater than 1 hour.

16



0.00

1.00

2.00

3.00

4.00

5.00

6.00

 0  1  2  3  4  5  6  7  8  9  10  11

T
o

ta
l 

co
st

 (
$

)

Total time (h)

123

4

5

6

3 (small)4 (small)7 (small)

3 (large)

7 (both xlarge)

8 (both xlarge) std.small
std.large

std.xlarge
hi-cpu.medium

hi-cpu.xlarge

Figure 7: Total cost of Sim1 as a function of the time that would be needed to complete all the tasks according to the

nominal ECU values. Labels within the graph show the number of instances (K) corresponding to the point (with the

name of the instance type in case of ambiguity.)

Eq. (5) can be rewritten as

CS (i,K) =
νiEiK

S
Sϕi

⌈

S

νiEiK

⌉

=

Sϕi

⌈

S
νiEi K

⌉

S
νiEi K

= Sϕi

⌈TS (i,K)⌉

TS (i,K)
=

Sϕi

η
.

(8)

It is clear that there is a lower bound to the cost of simulation S , that is equal to Sϕi, achieved

when the efficiency is one. This happens when the simulation time is exactly a multiple of one

hour. In all other cases, η < 1 and the cost is higher than the minimum value Sϕi. Efficiency

tends to one when simulation time increases. Now consider a simulation time shorter than one

hour: ⌈TS ⌉ = 1. Substituting ⌈TS ⌉ in Eq. (5) and using Eq. (4), the cost for the specific case

TS < 1 can be written as

CS =
Sϕi

TS

. (9)

The previous equation shows that in such a condition, i.e., maximum simulation speed up, due to

the Amazon pricing policy on partial hours, the cost is inversely proportional to simulation time.

For the Sim1 test case the cost that would be needed to complete all the tasks according to

the nominal ECU values is shown in Figure 7. Each line represents a different instance type.

Each point on the line corresponds to a different number of instances K. For high values of

simulation time, curves are approximately flat since the efficiency η is high, therefore cost is

almost constant. When the simulation time is decreased by increasing the number of instances

K, curves tend to follow an hyperbolic trend, which is due to the trend of the lower bound on

the efficiency. However, efficiency oscillates between the lower bound and one, therefore the
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Table 9: Experimental measurements of computing performance of EC2 instances using as many processes as the number

of available cores (Sim1).

Nominal Number Effective comp. power P

Name ECU/core of cores (std.small=1.00)

std.small 1 1 1.00

std.large 2 2 1.54

std.xlarge 2 4 1.32
hi-cpu.medium 2.5 2 2.37

hi-cpu.xlarge 2.5 8 1.36

hyperbolic trend is often interrupted. When time is lower than one hour, the trend becomes

hyperbolic for all the instance types, as stated by Eq. (9). Moreover, only two hyperbolae are

present, which indeed correspond to the two possible ϕi values, set by Amazon for the two

considered families of instances, that is, std and hi-cpu.

Note that the previous analysis do not consider the cost of disk I/O operations on the Amazon

cloud computing platform. However, in all our experiments, this has always been negligible

compared to the instance costs as detailed in Section 6.3.

The previous analysis assumes that the nominal computing power, in terms of ECU stated by

Amazon, allows to compute the running time of a given task on any type of instance. Actually,

this is not true, as already shown in Table 3 for the case of a CPU-intensive task. Actual tests

on EC2 have been performed by running, using the developed framework, a small set of each of

the simulations included in Sim1, Sim2 and Sim3. The proposed framework has been configured,

each time, to use different types of instances, so that we computed the processing power that can

be achieved by using every type of instance. For every run, only one type of instance was tested,

i.e., we did not mix instances of different types to make performance comparison easier. Results

are reported in Table 9 for Sim1, with reference to the performance provided by the std.small

instance type. Note that these results only apply to the considered simulation, since they are

influenced by both CPU and I/O activity. For each instance, a number of processes equal to the

number of available cores has been used to maximize the exploitation of the resources of each

instance. It is clear that the best performance is provided by the hi-cpu.medium instance type.

We attribute this behavior to the low number of virtual cores, which seems to perform better in

the EC2 infrastructure, and to the fact that the hi-cpu family of instances is probably better suited

for mainly CPU-bounded tasks such as the ones of our simulations.

To get a clear overview of the actual performance that can be achieved through the Amazon

infrastructure, Figure 8 shows the actual times and costs that can be achieved by using our pro-

posed framework in order to run all the tasks included in Sim1, with various tradeoffs between

time and cost, depending on the number of instances and the instance types. A comparison with

Figure 7 shows the same general trend, but there exists some discrepancies with respect to the

theoretical behavior expected by the nominal ECU values. From Figure 8 it is clear that the most

convenient instance type, in terms of both time and cost, for this particular type of simulation is

the hi-cpu.medium one. The same applies to Sim2 and Sim3.

As a final remark, note that Figure 8 do not show the point corresponding to running the sim-

ulations on the dedicated computer since the price would be more than two orders of magnitude

higher than the one shown for the same set of simulations in the cloud, while the time is fixed at

17,250 s, that is, nearly 5 hours. The next section includes a comparison of the time and cost, in

a realistic usage case, for the development of a new transmission algorithm based on simulation
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results obtained by means of the dedicated computer or the cloud system.

7.2. Multiple Simulations

This section aims at quantifying the costs and speed up of the cloud computing solution with

respect to the dedicated computers solution when simulations are part of an actual research ac-

tivity. In such a scenario, simulation experiments such as Sim1, Sim2 and Sim3 are run many

different times to investigate, improve and refine the performance of the algorithms. In order to

investigate the cost and time required by using a cloud simulation system rather than a PC we

assume that the research activity that leads to the development of a new algorithm is composed

by a number of consecutive simulation cycles. A simulation cycle is the basic unit of the de-

velopment process. One simulation cycle includes the time needed for investigation and a few

modifications of the algorithm as well as the time needed to run the simulations once, i.e.,

TC = TD + TS (10)

where TC is the duration of the simulation cycle, TD is the time spent to study and modify the

algorithm, and TS is the time spent to perform the simulation, either using the cloud computing

or the dedicated computer solution. Figure 9 illustrates the situation.

Moreover, in order to better model reality, we consider that operators (e.g., researchers) will

work during the daytime only. Therefore, if the TD implies that the operators’ work cannot be

terminated within the day, the remaining part of the work will be carried out at the beginning

of the next day. When the work is terminated, a new simulation cycle can start. Clearly, if

simulations extend past the end of the working day, they can continue since, of course, computers

can always work at night. Figure 10 illustrates the situation. In the following, we assume a

working day equal to 11 hours and TD values ranging from one hour up to the duration of the

working day.
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Figure 9: Diagram of the basic structure of a simulation cycle.

Figure 10: Diagram of the simulation cycle considering that operators do not work at night.

To better understand the implications of working during the daytime only, the total time needed

to perform all the simulation cycles in the Sim1 scenario with PC-based simulations using the i5

computer is shown in Figure 11. When operators can work at any time, time linearly increases

with TD, as expected. The behavior is more irregular (but still monotonic as a function of TD)

when operators work during daytime only. The irregular behavior is due to the fact that the

total time strongly depends on when the simulation in each cycle ends. If the ending time of

the simulation does not allow the operators to prepare and start the simulation of the next cycle

before the end of the working day, all the night elapses without any activity being performed,

thus increasing the total time. In the remainder of the paper we will always compute the total

time in the more realistic situation in which operators work during daytime only.

In the following, different values of TD as well as different simulations (i.e., different TS

values) will be considered to identify which are the conditions that lead to the highest advantage

when using the cloud solution instead of the PC-based solution. As shown in Figure 12, the total

time required to perform all the simulation cycles (20 in the figure) increases almost linearly

with TD when using the cloud which correspond to TS = 1 h for any simulation set, since this is

the best cost-performance tradeoff point as explained in Section 7.1. However, many simulations

such as, e.g., Sim1, Sim2 and Sim3 have much higher TS when carried out using the i5 PC. In such

conditions, the TD influence on the total time is more limited in certain intervals. The difference

between the curve for a given TS and the bottom curve corresponding to TS = 1 h can be seen

as a measure of convenience (in terms of speedup) of moving the simulation to the cloud. The

speedup itself is shown in Figure 13. For simulations such as Sim1 a significant speedup can

be achieved especially when the TD value is low while it reduces when TD is close to a whole

working day, that is, 11 hours. For simulations with higher TS values, very large speedups can

be achieved for low TD values while the speedup is more limited when TD is close to 11 hours.
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Figure 11: Comparison of the total time needed to perform all the simulation cycles when it is assumed that operators

work also during the night as soon as simulation finishes, or during daytime only. Sim1, PC-based simulations using the

i5 computer (TS = 4.8 h).

7.3. Cost Comparison

The best performance in terms of time is always achieved by using the cloud since the TS value

can always be reduced at approximately one hour while the cost remains the same. To perform

computations at least as fast as the cloud solution does, nPC PCs are needed, where

nPC =

⌈

S

νPCEPC

⌉

. (11)

However, the number of PCs can be reduced if the performance constraint is relaxed. Figure 14

shows that if a moderate increase of the total time is allowed, e.g., 30%, the number of PCs

reduces, for instance, from 5 to 3 in for the Sim1 case when TD is equal to 3 hours. In general,

higher TD values lead to a faster decrease of the number of PCs, since the importance of the

simulation time decrease when compared to the total time, as well as simulations can run at night

thus using time that is not used by the operators. For instance, for TD = 10 h only one PC is

needed if a modest 10% total time increase is allowed, because for both the cloud and the PC

solution it is necessary to wait for the next day to continue the work (1 hour simulation using

the cloud has the same effect, in terms of total time, to 4.8 hours using the PC). Figure 15 shows

similar results for the case of Sim2.

Once the number of PCs is known, it is possible to compare the cost of the cloud based solution

with the amount of money that would be needed to purchase and run the PCs. In the following

we assume that the lifetime (LPC) of a PC is 3 years and its cost is about 1,000 $. Other costs are

difficult to quantify, such as management costs, hardware failures, renting rooms and necessity of

advance planning for buying/placing the computers. However, some are easy, such as electricity

costs. For instance, in Italy the price for a 100 W electricity load used continuously, 24 hours a

day, is about 10 $/month (assuming 1 e = 1.35 $). Thus the cost CPC of maintaining a PC for its
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Figure 18: Time increase due to the operators working during daytime only compared to continuous working (20 cycles,

cloud based simulations).

lifetime is about 1,360 $. Clearly, all the costs mentioned here, including electricity, are null if

the cloud computing solution is used since they are already included in the price set by the cloud

provider.

Figure 16 shows the cost of the cloud solution as a percentage of the cost of the same-

performance or a lower-performance nPC-based solution (depending on the “time increase”

value) for the case of Sim1. When the cost value is lower than 100% the cloud solution is

cheaper than the nPC-based one. This always happens for TD greater than 1 hour if the same

performance of the cloud solution is sought. If some increase in the total time is allowed (up to

40% “time increase”), the cost raises but it is still well below the cost of the nPC-based solution

for TD values greater than 2.5 hours. Curves tend to increase while moving towards TD equal to

11 hours, since in that case simulations run for most or all the time at night. In this condition,

running times up to 13 hours do not affect the total time, thus the advantage of using the cloud

to run computations as fast as possible decreases. Figure 17 shows the same result for the case

of Sim2. Comparing it with the previous case, it can be seen that when a lower performance in

terms of time is considered for the nPC-based solution, the cost of the cloud increases faster if

TS is higher, since higher TD values imply that an increasing portion of the simulation can run

during the night without affecting the total time.

Note that, when the time needed by the nPC-based solution equals the time needed by the

cloud solution, the cost curve is the the same regardless of the complexity of the considered

simulation. In this condition, the time taken by simulations in both the cloud and the nPC-based

solution is 1 hour. Since we consider that operators work during daytime only, the actual time

taken by Ncy simulation cycles is Ncy(1+TD) f (TD) where f (TD) is a factor that takes into account

the total time increase due to working during daytime only. For TD values ranging from 1 to 10

hours it can be approximated as 2, as shown by Figure 18.

However, the cloud is paid only for the actual usage, therefore the respective costs of each

solution are:

Ccloud =
LPC

TS

SϕiNcy =
LPC

Ncy(1 + TD) f (TD)
SϕiNcy =

LPCϕiS

(1 + TD) f (TD)
(12)

and

CnPC
= CPC

S

νPC EPC

(13)
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which is a lower bound since the number of PCs should be an integer value. The upper bound on

the cloud / nPC cost ratio is:

Cratio =
LPCϕiνPCEPC

CPC

1

(1 + TD) f (TD)
. (14)

which matches the behavior shown in the figures. The first fraction does not depend on TD and

it is equal to 4.0386. The condition yielding an economic advantage for the cloud solution is:

TD >
LPCϕiνPCEPC

CPC

1

f (TD)
− 1. (15)

Assuming the f factor equal to 2, the cloud solution is cheaper if TD is greater than approximately

1 hour, and the economic advantage increases with greater TD values.

8. Conclusions and Future Work

This work focused on investigating the cost performance tradeoff of a cloud computing ap-

proach to run simulations frequently encountered during the research and development phase of

multimedia communication techniques, characterized by several develop-simulate-reconfigure

cycles. The traditional approach to speed up this type of relatively small simulations, i.e., run-

ning them in parallel on several computers and leaving them idle when developing for the next

simulation cycle, has been compared to a cloud computing solution where resources are obtained

on demand and paid only for their actual usage. The comparison has been performed from both

an analytical and a practical point of view, with reference to an actual test case, i.e., video com-

munications over a packet lossy network. Performance limits have been established in terms of

running time and costs. Moreover, a cloud simulation software framework has been presented to

simplify the virtual machines management in the cloud. Actual performance measurements and

costs have been reported for a few sample simulations. Results showed that currently, with refer-

ence to the commercial offer of Amazon cloud computing services, it is economically convenient

to use a cloud computing approach, especially in terms of reduced development time and costs,

with respect to a solution using dedicated computers, when the development time is higher than

one hour. However, if a high development time is needed between simulations, the economic

advantage progressively reduces as the computational complexity of the simulation increases.

Future work includes improving the framework in many aspects. For instance, data could

be directly downloaded eliminating the need to store them in the S3 system. Data distribution

inside the cloud could be improved so that, for example, some instances work on a subset of

data (i.e., only some sequences) reducing the necessity of using the I/O subsystem for re-reading

sequences. Associating weights to each task included in the simulation could allow to take into

account the different execution time when allocating tasks to the various instances, which would

be particularly useful to run simulations in which the sequences have mixed frame sizes and

lengths.
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