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ABSTRACT

In this paper we consider the problem of lossless compres-
sion of video sequences exploiting the temporal redundancy
between frames. In particular, we present a technique per-
forming motion compensation on more than one past frame.
Each prediction component is optimally weighted to mini-
mize the mean squared error of the residual. Experimental
results for several standard video sequences show that multi-
frame motion compensation with optimal weighting outper-
forms regular 1-frame motion compensation with gains up to
18.2% even for the case of just two past reference frames.

1. INTRODUCTION

Lossless compression of digital images has been the focus of
many research efforts in the last decade, when many new
techniques were proposed, among which CALIC [1] and
LOCO-I [2] standardized as JPEG-LS [3]. Several new ap-
plications, in fact, demand compression services that do not
alter the original data. Medical imaging, for instance, may
require lossless compression to make sure that physicians
will only analyze pristine diagnostic images [4]. Profes-
sional imaging, where images need to be stored in their orig-
inal undistorted form for future processing, is another impor-
tant field of application for lossless compression; also, many
high-end digital cameras enable the photographer to access
the raw, uncompressed picture, i.e. not altered by any cod-
ing algorithm. This can be very important if images are to be
used in a production pipeline where subsequent lossy coding-
decoding cycles could heavily affect the overall quality of the
final results.

However, while lossless image compression has long
been recognized as an important field, for what concerns
video sequences, most research efforts focused on lossy cod-
ing, probably due to the wide application field involved.

Comparatively, lossless coding of video sequences has
received much less attention while being increasingly impor-
tant for a number of applications ranging from digital cin-
ema, post-production, archiving and, last but not least, med-
ical applications. For example, medical imaging applica-
tions, such as computerized axial tomography (CAT), mag-
netic resonance imaging (MRI) or positron emission tomog-
raphy (PET), often generate sequences of strongly related
images. Since a single CAT image can be as large as 130 MB,
compression is clearly desirable, both for storage and remote
medical applications.

Finally, one of the digital cinema’s main requirements
is lossless video compression, due to the strict needs during
acquisition, post-production, archiving and distribution. The
maximum quality possible has to be preserved during all the
steps in the chain from the acquisition to the film theaters [5].

Most existing lossless coding techniques are typically
based on a simple paradigm consisting of a prediction step
followed by context-modeling and context-based entropy
coding of the residual. The aim of the prediction step is
to exploit the spatial redundancy due to the regularity and
smoothness of most continuous-tone images. Both CALIC
and LOCO-I follow this scheme to a certain extent, first de-
termining on a pixel basis the best predictor among a set of
fixed predefined ones and then encoding the prediction resid-
ual.

Video, being a sequence of often highly correlated im-
ages, is characterized by temporal redundancy between sub-
sequent frames, which is due to almost temporally invariant
backgrounds and to objects moving across the frames. A few
works have dealt specifically with this additional source of
redundancy, promising higher gains with respect to indepen-
dent lossless coding of each individual frame.

One of the first works dealing with video sequence
was presented by Sayood et al. in [6] where various tech-
niques taking into account temporal and spectral redundancy
of color video sequences were presented and an adaptive
scheme switching between the two sources of redundancy
was proposed. CALIC, the well-known state-of-the-art algo-
rithm for lossless still image coding, was extended to handle
interframe redundancy in [7]. In [8, 9] the authors presented
a low-complexity adaptive algorithm which combined, on a
pixel basis, a spatial and a temporal predictor to form a pre-
diction minimizing the MSE on a causal context of the pixel
to be coded.

To accurately model motion, however, a pixel-based ap-
proach is usually not sufficient, and blocks of pixels have to
be considered. Motion compensation is commonly employed
to model motion of objects between subsequent frames, es-
pecially for lossy video coding standards such as MPEG
and H.264 [10, 11]. Motion compensation consists in divid-
ing each frame into small blocks and for each one of them
searching a past frame (typically the preceding one) for the
most similar block according to a predefined distance mea-
sure, then, the residual difference along with the relative dis-
placement between the two blocks is coded. Thus, while mo-
tion compensation (like least-square prediction, in general) is
not directly aimed at minimizing entropy, which is the ulti-
mate goal for lossless coding techniques, it is a useful tool
to obtain a lower entropy residual with respect to the original
frame, because typically the prediction residual is character-
ized by a more peaky and skewed distribution with a lower
entropy.

Motion compensation was already proven to be an effec-
tive tool for removing temporal redundancy in lossless video
coding, in the above cited [6] and, more recently in [12],



Red Green Blue
0.88 0.96 0.92 0.89 0.97 0.92 0.91 0.97 0.93
0.87 0.93 0.89 0.88 0.94 0.90 0.90 0.95 0.92
0.83 0.88 0.85 0.85 0.89 0.86 0.86 0.90 0.88

Table 1: Correlation coefficients between 3× 3 pixel neigh-
borhoods in the same positions in frame[i] and frame[i-1]
(sequence: mobile and calendar).

Red Green Blue
0.84 0.90 0.87 0.85 0.91 0.88 0.87 0.92 0.90
0.82 0.87 0.84 0.83 0.88 0.86 0.86 0.90 0.88
0.79 0.84 0.81 0.81 0.85 0.83 0.83 0.87 0.85

Table 2: Correlation coefficients between 3× 3 pixel neigh-
borhoods in the same positions in frame[i] and frame[i-2]
(sequence: mobile and calendar).

where a technique combining motion estimation using the
previous frame as a reference with backward-adaptive least-
square prediction was proposed.

The main contributions of this paper regard motion-
compensation applied to lossless coding of video sequences.
In particular, we show that multiple reference frames com-
bined with least-square weighing can considerably improve
the performance of motion compensation-based lossless
video coding. We experimentally prove that gains up to
18.2% can be achieved by exploiting the correlation be-
tween a frame and the two preceding, with respect to reg-
ular one frame based motion compensation. The proposed
technique can be integrated into other motion compensation-
based lossless video sequence compression algorithms, such
as the technique described in [12].

The rest of this paper is organized as follows: in Sec-
tion 2 the main sources of redundancy in a video sequence are
described, the proposed algorithm is presented in Section 3,
and results are discussed in Section 4; finally, conclusions
are drawn in Section 5.

2. VIDEO SEQUENCE REDUNDANCY

The main sources of correlation in a color video sequence are
spatial, temporal and spectral redundancy.

Spatial redundancy depends on the correlation between
pixels of the same color band belonging to the same frame,
and is typically very high, at least for continuous-tone natural
images.

Temporal redundancy depends on the correlation be-
tween pixels of temporally adjacent frames and is typically
exploited by lossy video compression techniques such as
MPEG which depend on effective removal of temporal re-
dundancy to achieve high compression ratios.

Experiments show that in several cases temporal corre-
lation decreases slowly with time, being quite high even be-
tween frames separated by ten or more other frames. As an
example, Table 1 shows the correlation coefficients for 3×3
neighborhoods in the same position in the current and the
previous frames for the test video sequence Mobile and

calendar. Table 2 shows the same information about the
current frame and the frame before the previous one. Clearly,
it is apparent that there is a potential gain if more than one
past reference frame is used for predicting the current one.

Finally, color video sequences are characterized by an-
other source of redundancy, which is due to the correlation
between the different color bands of a frame; this is usually
referred to as spectral redundancy. Typical color video se-
quences have three color bands (usually red, green and blue).

In this paper we address the problem of exploiting tem-
poral redundancy as well as spatial redundancy by means of
multi-frame motion compensation.

3. ALGORITHM DESCRIPTION

In this section we will briefly review regular motion com-
pensation with one past reference frame and we propose an
extension using two reference frames. When motion com-
pensation is performed, the frame to-be-coded, i, is divided
in a number of blocks of size N ×N; for each block Bi(p) at

position p = (x,y), the previous frame i− 1 is searched in a

neighborhood of p for a block Bi−1(p+ v) = (bi−1
1 , . . . ,bi−1

N2 )
which minimizes a given distance measure; commonly em-
ployed measures are the euclidean distance between the two
blocks or the sum of absolute differences.

The residual difference

e = Bi(p)−Bi−1(p+ v), (1)

is then entropy-coded along with the corresponding motion
vector, v, indicating the relative displacement of the two
blocks.

We propose a scheme where more than one reference
frame is used, i.e., Eq. 1 becomes

ê = Bi(p)−
M

∑
j=1

w j ·B
i− j(p+ v j), (2)

where M is the number of past frames used for prediction and
W(p) = (w1(p), . . . ,wM(p)) are appropriate weights. This

means that for each block Bi(p) a closest match is sought for

in a number M of past frames and a prediction is formed as
a weighted linear combination of the selected blocks from
the preceding frames. To take into account non-stationarity
across the frame, since correlation between blocks in the cur-
rent frame and the past reference frames is not constant, these
weights cannot be considered constant but they need to be
computed for each block.

The weights W(p) (for the sake of simplicity in the rest

of the paper we will refer to them simply as W and w j re-
spectively) are computed so as to minimize the Minimum
Squared Error (MSE) of the residual, by solving for least-
squares the system of equations:

C ·W = R,

where

C =







bi−1
1 (p+ vi−1) . . . bi−M

1 (p+ vi−M)
...

. . .
...

bi−1
N2 (p+ vi−1) . . . bi−M

N2 (p+ vi−M)







is a matrix whose columns are made from each prediction
component block’s pixels and

R =







bi
1(p + vi)

...

bi
N2(p+ vi)









Figure 1: This pictures displays the distribution of the two
weights (w1,w2) computed from the training set. It is evident
how most of the points are on the line w2 = 1−w1.

is a column vector containing the pixel values of the
block to be predicted. Typically, this is an over-determined
system, i.e., with more equations than unknowns, for which
an exact solution cannot be found in general, but which can
be can be easily and quickly solved for a solution mini-
mizing the Mean Square Error (MSE) through SVD or QR-
decomposition.

The weights W for one block are not independent one
from the others and, typically, their sum is about one, which
is reasonable and expected because all the blocks have ap-
proximately the same energy, having been chosen to mini-
mize the MSE with respect to Bi(p). Figure 1 shows the

distribution of W for the two-frame case, thus they can be
quantized with a vector quantizer to minimize the bitrate
needed to encode them. For this purpose, an optimal (in
the MSE sense) vector quantizer can be designed on a train-
ing set and used at the encoder assuming it is known at the
decoder. For each block the encoder computes the optimal
weights, quantizes them, transmits the quantization index as
side information and uses the corresponding quantized ver-
sion (ŵ1, . . . , ŵM) in Eq. 2 to compute the prediction resid-
ual, so that the decoder can invert the process and losslessly
reconstruct the original frame.

On the other side, the decoder needs to be given both the
motion vectors v j and the quantization indices for W so that

the same prediction can be formed and added to the residual
thus allowing perfect reconstruction. As a consequence, the
encoded bit-stream consists of the prediction residuals and
the side information, i.e., the motion vectors and the quanti-
zation indices. Of course, performing motion-compensation
on M frames implies also sending M motion vectors as side
information, which accounts for a slight increase in bitrate.
Due to the high correlation between adjacent motion vectors,
though, their entropy is very low compared to the savings
achieved in coding the residuals.

Moreover, when some of the weights Ŵ tend to be ap-
proximately 1.0 for some specific frames and 0.0 for all the
others, then not all the motion vectors need to be transmitted
and just the relevant frames should be used for prediction,
thus achieving some additional bitrate saving.

Figure 2: Zero-order Entropy for the Green band of the
last 40 frames of the video sequence Foreman in the cases
of motion compensation using one and two past reference
frames. Most notably the 0-order entropy level for the two
frames case is consistently under the other.

As can be easily seen the whole process is highly asym-
metrical, with a fairly complex encoder and a simple decoder.

4. RESULTS

We implemented and tested the proposed technique using
two past reference frames (M = 2) and we compared it with
regular motion compensation; in both cases the test set con-
sidered was the green band of a number of standard color
video sequences.

The block size was chosen to be 16×16 (N = 16) which
is a common choice, for example in MPEG and H.264, and
the search range for full motion-compensation was set to ±8
pixels; the weights W were quantized on 5 bits, so that the
amount of side information needed to transmit them could be
considered negligible with respect to the gain; for the chosen
block size the increase in bitrate for transmitting the weight’s
quantization indices is less than 0.02 bits per pixel.

Figure 2 depicts 0-order entropy for 1-frame and 2-frame
motion compensation for the standard test video sequence
foreman; it is evident how using two frames consistently
delivers a lower entropy level over single-frame motion com-
pensation.

This example is confirmed by the average results shown
on Table 3 for several test sequences; for each one of them
compression was performed excluding the first 50 frames,
which were used to train the vector quantizer.

Gains up to 18.21% are achieved for the video sequences
Salesman and Mobile & Calendar which are rich of high-
frequency content. Lower gains are achieved on Akiyo and
Silent, which are two similar video sequences in which a
foreground person moves slowly in front of a static back-
ground; this behavior is probably due to the fact that a signif-
icant part of each picture is almost constant so that increasing
the number of frames used for prediction gives a negligible
contribution with respect to single frame prediction.



Sequence name 1-Frame MC 2-Frame MC Diff. Gain
bits/pixel bits/pixel bits/pixel (%)

Salesman 3.569 4.364 0.795 18.21%
Mobile & Calendar 4.390 5.160 0.771 14.94%
Container 3.263 3.520 0.258 7.32%
Tempete 4.667 5.032 0.366 7.28%
Kitchgrass 4.315 4.632 0.316 6.83%
Sean 3.042 3.182 0.141 4.42%
Akiyo 1.905 1.970 0.065 3.30%
Silent 3.340 3.452 0.112 3.26%

Table 3: Average results for the two techniques on the test set considered in this paper; per frame average 0-order entropy
values are shown. Two-frames motion compensation consistently outperforms the competitor.

5. CONCLUSIONS

In this paper we presented and discussed an extension to the
basic motion compensation paradigm for lossless video cod-
ing. Motion compensation is a common building block for
many video-sequence coding techniques.

After a preliminary study which proved that temporal re-
dundancy slowly decreases with time, so that for many video
sequences correlation is quite high even between frames
which are separated by ten of more other frames, we pro-
posed to use more past frames for predicting the current
one and to weight each contribution to minimize the mean
squared error of the prediction residual.

The proposed technique was tested on a number of stan-
dard video sequences and was proven to attain gains up to
18.2% with respect to regular single-frame motion compen-
sation, in terms of 0-order entropy of the prediction resid-
ual, thus allowing for better packing of the data and, conse-
quently, considerable bandwidth savings.

Future work includes the study of techniques using a
higher number of past frames. Experimenting with different
block and search window sizes to evaluate how they affect
performance should be considered as well.
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